In mathematics, the residue field is a basic construction in commutative algebra. If R is a commutative ring and m is a maximal ideal, then the residue field is the quotient ring k = R/m, which is a field. Frequently, R is a local ring and m is then its unique maximal ideal. This construction is applied in algebraic geometry, where to every point x of a scheme X one associates its residue field k(x). One can say a little loosely that the residue field of a point of an abstract algebraic variety is the 'natural domain' for the coordinates of the point. Suppose that R is a commutative local ring, with maximal ideal m. Then the residue field is the quotient ring R/m. Now suppose that X is a scheme and x is a point of X. By the definition of scheme, we may find an affine neighbourhood U = Spec(A), with A some commutative ring. Considered in the neighbourhood U, the point x corresponds to a prime ideal p ⊆ A (see Zariski topology). The local ring of X in x is by definition the localization R = Ap, with the maximal ideal m = p·Ap. Applying the construction above, we obtain the residue field of the point x : k(x) := Ap / p·Ap. One can prove that this definition does not depend on the choice of the affine neighbourhood U. A point is called K-rational for a certain field K, if k(x) = K. Consider the affine line A1(k) = Spec(k[t]) over a field k. If k is algebraically closed, there are exactly two types of prime ideals, namely (t − a), a ∈ k (0), the zero-ideal. The residue fields are the function field over k in one variable. If k is not algebraically closed, then more types arise, for example if k = R, then the prime ideal (x2 + 1) has residue field isomorphic to C. For a scheme locally of finite type over a field k, a point x is closed if and only if k(x) is a finite extension of the base field k. This is a geometric formulation of Hilbert's Nullstellensatz. In the above example, the points of the first kind are closed, having residue field k, whereas the second point is the generic point, having transcendence degree 1 over k.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (3)
MATH-662: Perfectoid spaces
The course is about defining perfectoid spaces, and possibly presenting some applications.
COM-309: Introduction to quantum information processing
Information is processed in physical devices. In the quantum regime the concept of classical bit is replaced by the quantum bit. We introduce quantum principles, and then quantum communications, key d
MATH-494: Topics in arithmetic geometry
P-adic numbers are a number theoretic analogue of the real numbers, which interpolate between arithmetics, analysis and geometry. In this course we study their basic properties and give various applic
Séances de cours associées (14)
Matrice de densité: Recap et Bloch 'Ball'
Couvre le concept de matrice de densité et ses propriétés, en mettant l'accent sur les mélanges statistiques et les mesures.
Manifolds : Graphiques et compatibilité
Couvre les variétés, les graphiques, la compatibilité et les sous-groupes avec des équations analytiques lisses.
Cryptographie Diffie-Hellman: Bases
Présente les bases de la cryptographie Diffie-Hellman, couvrant les algorithmes, les monoïdes et les protocoles d'accord clés.
Afficher plus
Publications associées (5)
Personnes associées (2)
Concepts associés (16)
Corps de nombres
En mathématiques, un corps de nombres algébriques (ou simplement corps de nombres) est une extension finie K du corps Q des nombres rationnels. En particulier, c'est une extension algébrique : tous les éléments de K sont des nombres algébriques, dont le degré divise le degré de l'extension. C'est aussi une extension séparable car Q est de caractéristique nulle donc parfait. Tout sous-corps de C engendré par un nombre fini de nombres algébriques est un corps de nombres.
Morphism of algebraic varieties
In algebraic geometry, a morphism between algebraic varieties is a function between the varieties that is given locally by polynomials. It is also called a regular map. A morphism from an algebraic variety to the affine line is also called a regular function. A regular map whose inverse is also regular is called biregular, and the biregular maps are the isomorphisms of algebraic varieties.
Fiber product of schemes
In mathematics, specifically in algebraic geometry, the fiber product of schemes is a fundamental construction. It has many interpretations and special cases. For example, the fiber product describes how an algebraic variety over one field determines a variety over a bigger field, or the pullback of a family of varieties, or a fiber of a family of varieties. Base change is a closely related notion. The of schemes is a broad setting for algebraic geometry.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.