In computer programming, gene expression programming (GEP) is an evolutionary algorithm that creates computer programs or models. These computer programs are complex tree structures that learn and adapt by changing their sizes, shapes, and composition, much like a living organism. And like living organisms, the computer programs of GEP are also encoded in simple linear chromosomes of fixed length. Thus, GEP is a genotype–phenotype system, benefiting from a simple genome to keep and transmit the genetic information and a complex phenotype to explore the environment and adapt to it.
Evolutionary algorithms use populations of individuals, select individuals according to fitness, and introduce genetic variation using one or more genetic operators. Their use in artificial computational systems dates back to the 1950s where they were used to solve optimization problems (e.g. Box 1957 and Friedman 1959). But it was with the introduction of evolution strategies by Rechenberg in 1965 that evolutionary algorithms gained popularity. A good overview text on evolutionary algorithms is the book "An Introduction to Genetic Algorithms" by Mitchell (1996).
Gene expression programming belongs to the family of evolutionary algorithms and is closely related to genetic algorithms and genetic programming. From genetic algorithms it inherited the linear chromosomes of fixed length; and from genetic programming it inherited the expressive parse trees of varied sizes and shapes.
In gene expression programming the linear chromosomes work as the genotype and the parse trees as the phenotype, creating a genotype/phenotype system. This genotype/phenotype system is multigenic, thus encoding multiple parse trees in each chromosome. This means that the computer programs created by GEP are composed of multiple parse trees. Because these parse trees are the result of gene expression, in GEP they are called expression trees. Masood Nekoei, et al. utilized this expression programming style in ABC optimization to conduct ABCEP as a method that outperformed other evolutionary algorithms.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This seminar course covers principles and recent advancements in machine learning methods that have the ability to solve multiple tasks and generalize to new domains in which training and test distrib
In artificial intelligence, genetic programming (GP) is a technique of evolving programs, starting from a population of unfit (usually random) programs, fit for a particular task by applying operations analogous to natural genetic processes to the population of programs. The operations are: selection of the fittest programs for reproduction (crossover), replication and/or mutation according to a predefined fitness measure, usually proficiency at the desired task.
Multi Expression Programming (MEP) is an evolutionary algorithm for generating mathematical functions describing a given set of data. MEP is a Genetic Programming variant encoding multiple solutions in the same chromosome. MEP representation is not specific (multiple representations have been tested). In the simplest variant, MEP chromosomes are linear strings of instructions. This representation was inspired by Three-address code. MEP strength consists in the ability to encode multiple solutions, of a problem, in the same chromosome.
A neural network can refer to a neural circuit of biological neurons (sometimes also called a biological neural network), a network of artificial neurons or nodes in the case of an artificial neural network. Artificial neural networks are used for solving artificial intelligence (AI) problems; they model connections of biological neurons as weights between nodes. A positive weight reflects an excitatory connection, while negative values mean inhibitory connections. All inputs are modified by a weight and summed.
Understanding how biological matter takes its shape is instrumental to biology, bioengineering, medicine, and bioinspired engineering. Gaining information on the principles of morphogenesis could enable clinicians to correct developmental abnormalities, ev ...
Interpretability for neural networks is a trade-off between three key requirements: 1) faithfulness of the explanation (i.e., how perfectly it explains the prediction), 2) understandability of the explanation by humans, and 3) model performance. Most exist ...
2024
,
We present the NaviCatGA package, a versatile genetic algorithm capable of optimizing molecular catalyst structures using well-suited fitness functions to achieve a set of targeted properties. The flexibility and generality of this tool are validated and d ...