Oxaloacetic acid (also known as oxalacetic acid or OAA) is a crystalline organic compound with the chemical formula HO2CC(O)CH2CO2H. Oxaloacetic acid, in the form of its conjugate base oxaloacetate, is a metabolic intermediate in many processes that occur in animals. It takes part in gluconeogenesis, the urea cycle, the glyoxylate cycle, amino acid synthesis, fatty acid synthesis and the citric acid cycle.
Oxaloacetic acid undergoes successive deprotonations to give the dianion:
HO2CC(O)CH2CO2H −O2CC(O)CH2CO2H + H+, pKa = 2.22
−O2CC(O)CH2CO2H −O2CC(O)CH2CO2− + H+, pKa = 3.89
At high pH, the enolizable proton is ionized:
−O2CC(O)CH2CO2− −O2CC(O−)CHCO2− + H+, pKa = 13.03
The enol forms of oxaloacetic acid are particularly stable. Keto-enol tautomerization is catalyzed by the enzyme oxaloacetate tautomerase. trans-Enol-oxaloacetate also appears when tartrate is the substrate for fumarase.
Oxaloacetate forms in several ways in nature. A principal route is upon oxidation of L-malate, catalyzed by malate dehydrogenase, in the citric acid cycle. Malate is also oxidized by succinate dehydrogenase in a slow reaction with the initial product being enol-oxaloacetate.
It also arises from the condensation of pyruvate with carbonic acid, driven by the hydrolysis of ATP:
CH3C(O)CO2− + HCO3− + ATP → −O2CCH2C(O)CO2− + ADP + Pi
Occurring in the mesophyll of plants, this process proceeds via phosphoenolpyruvate, catalysed by phosphoenolpyruvate carboxylase. Oxaloacetate can also arise from trans- or de- amination of aspartic acid.
Oxaloacetate is an intermediate of the citric acid cycle, where it reacts with acetyl-CoA to form citrate, catalyzed by citrate synthase. It is also involved in gluconeogenesis, the urea cycle, the glyoxylate cycle, amino acid synthesis, and fatty acid synthesis. Oxaloacetate is also a potent inhibitor of complex II.
Gluconeogenesis is a metabolic pathway consisting of a series of eleven enzyme-catalyzed reactions, resulting in the generation of glucose from non-carbohydrates substrates.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
"Microbiology for engineers" covers the main microbial processes that take place in the environment and in treatment systems. It presents elemental cycles that are catalyzed by microorganisms and that
Biochemistry is a key discipline for the Life Sciences. Biological Chemistry I and II are two tightly interconnected courses that aim to describe and understand in molecular terms the processes that m
Closely interfacing with bioengineering and medicine, this course provides foundational concepts in applying small-molecule chemical toolsets to probe the functions of living systems at the mechanisti
Explores microbial pathways for carbon fixation and the production of key metabolites.
Explores photosynthesis in anoxygenic phototrophs and the mechanisms of carbon fixation.
Explores targeting glycolysis and cancer signaling switches, enzyme inhibition mechanisms, and the role of ATP as the body's energy currency.
Learn about how the quality of water is a direct result of complex bio-geo-chemical interactions, and about how to use these processes to mitigate water quality issues.
Gluconeogenesis (GNG) is a metabolic pathway that results in the generation of glucose from certain non-carbohydrate carbon substrates. It is a ubiquitous process, present in plants, animals, fungi, bacteria, and other microorganisms. In vertebrates, gluconeogenesis occurs mainly in the liver and, to a lesser extent, in the cortex of the kidneys. It is one of two primary mechanisms – the other being degradation of glycogen (glycogenolysis) – used by humans and many other animals to maintain blood sugar levels, avoiding low levels (hypoglycemia).
Phosphoenolpyruvate (2-phosphoenolpyruvate, PEP) is the ester derived from the enol of pyruvate and phosphate. It exists as an anion. PEP is an important intermediate in biochemistry. It has the highest-energy phosphate bond found (−61.9 kJ/mol) in organisms, and is involved in glycolysis and gluconeogenesis. In plants, it is also involved in the biosynthesis of various aromatic compounds, and in carbon fixation; in bacteria, it is also used as the source of energy for the phosphotransferase system.
Fumaric acid is an organic compound with the formula HO2CCH=CHCO2H. A white solid, fumaric acid occurs widely in nature. It has a fruit-like taste and has been used as a food additive. Its E number is E297. The salts and esters are known as fumarates. Fumarate can also refer to the C4H2O42− ion (in solution). Fumaric acid is the trans isomer of butenedioic acid, while maleic acid is the cis isomer. It is produced in eukaryotic organisms from succinate in complex 2 of the electron transport chain via the enzyme succinate dehydrogenase.
The conception of epoxy thermosets with both reprocessability and flame retardancy delineates a new horizon in polymer science, offering a material solution that is not only superior in fire safety but is also environment friendly. Herein, a flame-retardan ...
The severe social and economic burden of stroke is a strong motivation for the exploration of innovative medical approaches. In this context, magnetic resonance (MR) of hyperpolarized (HP) molecular agents via dissolution dynamic nuclear polarization (dDNP ...
EPFL2023
, ,
Nanometric scale size oscillations seem to be a fundamental feature of all living organisms on Earth. Their detection usually requires complex and very sensitive devices. However, some recent studies demonstrated that very simple optical microscopes and de ...