Concept

Galois cohomology

Summary
In mathematics, Galois cohomology is the study of the group cohomology of Galois modules, that is, the application of homological algebra to modules for Galois groups. A Galois group G associated to a field extension L/K acts in a natural way on some abelian groups, for example those constructed directly from L, but also through other Galois representations that may be derived by more abstract means. Galois cohomology accounts for the way in which taking Galois-invariant elements fails to be an exact functor. The current theory of Galois cohomology came together around 1950, when it was realised that the Galois cohomology of ideal class groups in algebraic number theory was one way to formulate class field theory, at the time it was in the process of ridding itself of connections to L-functions. Galois cohomology makes no assumption that Galois groups are abelian groups, so this was a non-abelian theory. It was formulated abstractly as a theory of class formations. Two developments of the 1960s turned the position around. Firstly, Galois cohomology appeared as the foundational layer of étale cohomology theory (roughly speaking, the theory as it applies to zero-dimensional schemes). Secondly, non-abelian class field theory was launched as part of the Langlands philosophy. The earliest results identifiable as Galois cohomology had been known long before, in algebraic number theory and the arithmetic of elliptic curves. The normal basis theorem implies that the first cohomology group of the additive group of L will vanish; this is a result on general field extensions, but was known in some form to Richard Dedekind. The corresponding result for the multiplicative group is known as Hilbert's Theorem 90, and was known before 1900. Kummer theory was another such early part of the theory, giving a description of the connecting homomorphism coming from the m-th power map. In fact, for a while the multiplicative case of a 1-cocycle for groups that are not necessarily cyclic was formulated as the solubility of Noether's equations, named for Emmy Noether; they appear under this name in Emil Artin's treatment of Galois theory, and may have been folklore in the 1920s.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.