Concept

Tactical air navigation system

Summary
A tactical air navigation system, commonly referred to by the acronym TACAN, is a navigation system used by military aircraft. It provides the user with bearing and distance (slant-range or hypotenuse) to a ground or ship-borne station. It is a more accurate version of the VOR/DME system that provides bearing and range information for civil aviation. The DME portion of the TACAN system is available for civil use; at VORTAC facilities where a VOR is combined with a TACAN, civil aircraft can receive VOR/DME readings. Aircraft equipped with TACAN avionics can use this system for en route navigation as well as non-precision approaches to landing fields. The Space Shuttle is one such vehicle that was designed to use TACAN navigation but later upgraded with GPS as a replacement. The typical TACAN onboard user panel has control switches for setting the channel (corresponding to the desired surface station's assigned frequency), the operation mode for either transmit/receive (T/R, to get both bearing and range) or receive only (REC, to get bearing but not range). Capability was later upgraded to include an air-to-air mode (A/A) where two airborne users can get relative slant-range information. Depending on the installation, Air-to-Air mode may provide range, closure (relative velocity of the other unit), and bearing, though an air-to-air bearing is noticeably less precise than a ground-to-air bearing. A TACAN only equipped aircraft cannot receive bearing information from a VOR only station. The TACAN navigation system is an evolution of radio transponder navigation systems that date back to the British Oboe system of World War II. In the United States, many companies were involved with the development of TACAN for military aircraft. Hoffman Laboratories Div. of the Hoffman Electronics Corp.–Military Products Division (now NavCom Defense Electronics) was a leader in developing the present TACAN system in the US starting in the late 1950s. TACAN in general can be described as the military version of the VOR/DME system.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.