A polar ice cap or polar cap is a high-latitude region of a planet, dwarf planet, or natural satellite that is covered in ice.
There are no requirements with respect to size or composition for a body of ice to be termed a polar ice cap, nor any geological requirement for it to be over land, but only that it must be a body of solid phase matter in the polar region. This causes the term "polar ice cap" to be something of a misnomer, as the term ice cap itself is applied more narrowly to bodies that are over land, and cover less than 50,000 km2: larger bodies are referred to as ice sheets.
The composition of the ice will vary. For example, Earth's polar caps are mainly water ice, whereas Mars's polar ice caps are a mixture of solid carbon dioxide and water ice.
Polar ice caps form because high-latitude regions receive less energy in the form of solar radiation from the Sun than equatorial regions, resulting in lower surface temperatures.
Earth's polar caps have changed dramatically over the last 12,000 years. Seasonal variations of the ice caps takes place due to varied solar energy absorption as the planet or moon revolves around the Sun. Additionally, in geologic time scales, the ice caps may grow or shrink due to climate change.
Polar regions of Earth
File:North pole september ice-pack 1978-2002.png|Extent of the Arctic sea-ice in September 1978 – 2002
File:North pole february ice-pack 1978-2002.png|Extent of the Arctic sea-ice in February 1978 – 2002
File:The Earth seen from Apollo 17.jpg|''[[The Blue Marble]]'', Earth as seen from [[Apollo 17]] with the southern polar ice cap visible (courtesy [[NASA]])
Arctic sea ice decline
Earth's North Pole is covered by floating pack ice (sea ice) over the Arctic Ocean. Portions of the ice that do not melt seasonally can get very thick, up to 3–4 meters thick over large areas, with ridges up to 20 meters thick. One-year ice is usually about 1 meter thick. The area covered by sea ice ranges between 9 and 12 million km2. In addition, the Greenland ice sheet covers about 1.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Fresh water or freshwater is any naturally occurring liquid or frozen water containing low concentrations of dissolved salts and other total dissolved solids. Although the term specifically excludes seawater and brackish water, it does include non-salty mineral-rich waters such as chalybeate springs. Fresh water may encompass frozen and meltwater in ice sheets, ice caps, glaciers, snowfields and icebergs, natural precipitations such as rainfall, snowfall, hail/sleet and graupel, and surface runoffs that form inland bodies of water such as wetlands, ponds, lakes, rivers, streams, as well as groundwater contained in aquifers, subterranean rivers and lakes.
The polar regions, also called the frigid zones or polar zones, of Earth are Earth's polar ice caps, the regions of the planet that surround its geographical poles (the North and South Poles), lying within the polar circles. These high latitudes are dominated by floating sea ice covering much of the Arctic Ocean in the north, and by the Antarctic ice sheet on the continent of Antarctica and the Southern Ocean in the south.
The cryosphere (from the Greek κρύος kryos, "cold", "frost" or "ice" and σφαῖρα sphaira, "globe, ball") is an all-encompassing term for the portions of Earth's surface where water is in solid form, including sea ice, lake ice, river ice, snow cover, glaciers, ice caps, ice sheets, and frozen ground (which includes permafrost). Thus, there is a wide overlap with the hydrosphere. The cryosphere is an integral part of the global climate system with important linkages and feedbacks generated through its influence on surface energy and moisture fluxes, clouds, precipitation, hydrology, atmospheric and oceanic circulation.
The course equips students with a comprehensive scientific understanding of climate change covering a wide range of topics from physical principles, historical climate change, greenhouse gas emissions
This course introduces students to continuous, nonlinear optimization. We study the theory of optimization with continuous variables (with full proofs), and we analyze and implement important algorith
Polar oceans and sea ice cover 15% of the Earth’s ocean surface, and the environment is changing rapidly at both poles. Improving knowledge on the interactions between the atmospheric and oceanic realms in the polar regions, a Surface Ocean–Lower Atmospher ...
Polar sciences are crucial to understand the effects of climate change. 6 out of 9 eco-tipping points identified by the IPCC are situated in the polar regions. Potential rising sea levels, altered weather patterns and changes in sea-currents are all connec ...
The surface mass balance (SMB) of large polar ice sheets and of snow and ice surfaces in general are incompletely understood because of the complexity of processes involved. One such process, drifting and blowing snow, has only been considered in a very si ...