Position error is one of the errors affecting the systems in an aircraft for measuring airspeed and altitude. It is not practical or necessary for an aircraft to have an airspeed indicating system and an altitude indicating system that are exactly accurate. A small amount of error is tolerable. It is caused by the location of the static vent that supplies air pressure to the airspeed indicator and altimeter.
All aircraft are equipped with a small hole in the surface of the aircraft called the static port. The air pressure in the vicinity of the static port is conveyed by a conduit to the altimeter and the airspeed indicator. This static port and the conduit constitute the aircraft's static system. The objective of the static system is to sense the pressure of the air at the altitude at which the aircraft is flying. In an ideal static system the air pressure fed to the altimeter and airspeed indicator is equal to the pressure of the air at the altitude at which the aircraft is flying.
As the air flows past an aircraft in flight, the streamlines are affected by the presence of the aircraft, and the speed of the air relative to the aircraft is different at different positions on the aircraft's outer surface. In consequence of Bernoulli's principle, the different speeds of the air result in different pressures at different positions on the aircraft's surface. The ideal position for a static port is a position where the local air pressure in flight is always equal to the pressure remote from the aircraft, however there is no position on an aircraft where this ideal situation exists for all angles of attack. When deciding on a position for a static port, aircraft designers attempt to find a position where the error between static pressure and free-stream pressure is a minimum across the operating range of angle of attack of the aircraft. The residual error at any given angle of attack is called the position error.
Position error affects the indicated airspeed and the indicated altitude.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course deals with the design of precast reinforced concrete structures, both for bridges and for buildings.
The course is focused in learning by projects supplemented by some lectures by the teac
Ce cours traite les principaux aspects de la conception et du dimensionnement des ponts en béton armé et précontraint. L'accent est mis sur les ponts poutres. Etude des aspects suivants : optimisation
Ce cours permet de maitriser les aspects fondamentaux et pratiques du dimensionnement des structures en acier. Il traite des poutres, des poteaux, des assemblages, des cadres, des systèmes porteurs et
Several airplanes crashes throughout the past decades are linked to the failure of the airplane flow velocity sensor known as pitot device or pitot tube. The study of its behavior in blockage, either due to human errors or due to environmental factors, cou ...
Phosphorus (P) is a major agricultural nutrient and, in its mineable form, a potentially scarce resource. Countries with limited physical access to P should hence develop an effective national P governance. This requires analyses of trends and variations i ...
Background: Active upper-limb prostheses are used to restore important hand functionalities, such as grasping. In conventional approaches, a pattern recognition system is trained over a number of static grasping gestures. However, training a classifier in ...
A pitot-static system is a system of pressure-sensitive instruments that is most often used in aviation to determine an aircraft's airspeed, Mach number, altitude, and altitude trend. A pitot-static system generally consists of a pitot tube, a static port, and the pitot-static instruments. Other instruments that might be connected are air data computers, flight data recorders, altitude encoders, cabin pressurization controllers, and various airspeed switches.
In aviation, airspeed is the speed of an aircraft relative to the air. Among the common conventions for qualifying airspeed are: Indicated airspeed ("IAS"), what is read on an airspeed gauge connected to a Pitot-static system; Calibrated airspeed ("CAS"), indicated airspeed adjusted for pitot system position and installation error; Equivalent airspeed ("EAS"), calibrated airspeed adjusted for compressibility effects; True airspeed ("TAS"), equivalent airspeed adjusted for air density, and is the speed of the aircraft through the air in which it is flying.
A pitot tube (ˈpiːtoʊ ; also pitot probe) measures fluid flow velocity. It was invented by a French engineer, Henri Pitot, in the early 18th century, and was modified to its modern form in the mid-19th century by a French scientist, Henry Darcy. It is widely used to determine the airspeed of aircraft; the water speed of boats; and the flow velocity of liquids, air, and gases in industry. The basic pitot tube consists of a tube pointing directly into the fluid flow.