In mathematics, the Weil pairing is a pairing (bilinear form, though with multiplicative notation) on the points of order dividing n of an elliptic curve E, taking values in nth roots of unity. More generally there is a similar Weil pairing between points of order n of an abelian variety and its dual. It was introduced by André Weil (1940) for Jacobians of curves, who gave an abstract algebraic definition; the corresponding results for elliptic functions were known, and can be expressed simply by use of the Weierstrass sigma function.
Choose an elliptic curve E defined over a field K, and an integer n > 0 (we require n to be coprime to char(K) if char(K) > 0) such that K contains a primitive nth root of unity. Then the n-torsion on is known to be a Cartesian product of two cyclic groups of order n. The Weil pairing produces an n-th root of unity
by means of Kummer theory, for any two points , where and .
A down-to-earth construction of the Weil pairing is as follows. Choose a function F in the function field of E over the algebraic closure of K with divisor
So F has a simple zero at each point P + kQ, and a simple pole at each point kQ if these points are all distinct. Then F is well-defined up to multiplication by a constant. If G is the translation of F by Q, then by construction G has the same divisor, so the function G/F is constant.
Therefore if we define
we shall have an n-th root of unity (as translating n times must give 1) other than 1. With this definition it can be shown that w is alternating and bilinear, giving rise to a non-degenerate pairing on the n-torsion.
The Weil pairing does not extend to a pairing on all the torsion points (the direct limit of n-torsion points) because the pairings for different n are not the same. However
they do fit together to give a pairing Tl(E) × Tl(E) → Tl(μ) on the Tate module Tl(E) of the elliptic curve E (the inverse limit of the ln-torsion points) to the Tate module Tl(μ) of the multiplicative group (the inverse limit of ln roots of unity).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Elliptic-curve cryptography (ECC) is an approach to public-key cryptography based on the algebraic structure of elliptic curves over finite fields. ECC allows smaller keys compared to non-EC cryptography (based on plain Galois fields) to provide equivalent security. Elliptic curves are applicable for key agreement, digital signatures, pseudo-random generators and other tasks. Indirectly, they can be used for encryption by combining the key agreement with a symmetric encryption scheme.
Given a possibly reducible and non-reduced spectral cover pi: X -> C over a smooth projective complex curve C we determine the group of connected components of the Prym variety Prym(X/C). As an immediate application we show that the finite group of n-torsi ...
Geometry & Topology Publications2012
, ,
Fix a prime number l. Graphs of isogenies of degree a power of l are well-understood for elliptic curves, but not for higher-dimensional abelian varieties. We study the case of absolutely simple ordinary abelian varieties over a finite field. We analyse gr ...
Springer Heidelberg2017
We consider the problem of securing inter-flow network coding with multiple sources. We present a practical homomorphic signature scheme that makes possible to verify network coded packets composed of data originating from different sources. The multi-source ...