In mathematics, the Weil pairing is a pairing (bilinear form, though with multiplicative notation) on the points of order dividing n of an elliptic curve E, taking values in nth roots of unity. More generally there is a similar Weil pairing between points of order n of an abelian variety and its dual. It was introduced by André Weil (1940) for Jacobians of curves, who gave an abstract algebraic definition; the corresponding results for elliptic functions were known, and can be expressed simply by use of the Weierstrass sigma function. Choose an elliptic curve E defined over a field K, and an integer n > 0 (we require n to be coprime to char(K) if char(K) > 0) such that K contains a primitive nth root of unity. Then the n-torsion on is known to be a Cartesian product of two cyclic groups of order n. The Weil pairing produces an n-th root of unity by means of Kummer theory, for any two points , where and . A down-to-earth construction of the Weil pairing is as follows. Choose a function F in the function field of E over the algebraic closure of K with divisor So F has a simple zero at each point P + kQ, and a simple pole at each point kQ if these points are all distinct. Then F is well-defined up to multiplication by a constant. If G is the translation of F by Q, then by construction G has the same divisor, so the function G/F is constant. Therefore if we define we shall have an n-th root of unity (as translating n times must give 1) other than 1. With this definition it can be shown that w is alternating and bilinear, giving rise to a non-degenerate pairing on the n-torsion. The Weil pairing does not extend to a pairing on all the torsion points (the direct limit of n-torsion points) because the pairings for different n are not the same. However they do fit together to give a pairing Tl(E) × Tl(E) → Tl(μ) on the Tate module Tl(E) of the elliptic curve E (the inverse limit of the ln-torsion points) to the Tate module Tl(μ) of the multiplicative group (the inverse limit of ln roots of unity).
Dimitar Petkov Jetchev, Benjamin Pierre Charles Wesolowski, Ernest Hunter Brooks