In mathematical physics, geometric quantization is a mathematical approach to defining a quantum theory corresponding to a given classical theory. It attempts to carry out quantization, for which there is in general no exact recipe, in such a way that certain analogies between the classical theory and the quantum theory remain manifest. For example, the similarity between the Heisenberg equation in the Heisenberg picture of quantum mechanics and the Hamilton equation in classical physics should be built in.
One of the earliest attempts at a natural quantization was Weyl quantization, proposed by Hermann Weyl in 1927. Here, an attempt is made to associate a quantum-mechanical observable (a self-adjoint operator on a Hilbert space) with a real-valued function on classical phase space. The position and momentum in this phase space are mapped to the generators of the Heisenberg group, and the Hilbert space appears as a group representation of the Heisenberg group. In 1946, H. J. Groenewold considered the product of a pair of such observables and asked what the corresponding function would be on the classical phase space. This led him to discover the phase-space star-product of a pair of functions.
The modern theory of geometric quantization was developed by Bertram Kostant and Jean-Marie Souriau in the 1970s. One of the motivations of the theory was to understand and generalize Kirillov's orbit method in representation theory.
The geometric quantization procedure falls into the following three steps: prequantization, polarization, and metaplectic correction. Prequantization produces a natural Hilbert space together with a quantization procedure for observables that exactly transforms Poisson brackets on the classical side into commutators on the quantum side. Nevertheless, the prequantum Hilbert space is generally understood to be "too big". The idea is that one should then select a Poisson-commuting set of n variables on the 2n-dimensional phase space and consider functions (or, more properly, sections) that depend only on these n variables.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course on one hand develops the quantum theory of electromagnetic radiation from the principles of quantum electrodynamics. It will cover basis historic developments (coherent states, squeezed st
Recent advances on low-dimensional and topological materials has greatly inspired the research in condensed matter physics. This thesis is devoted to the computational and theoretical study of topological effects in two-dimensional materials, especially na ...
EPFL2023
Conformal Field Theories (CFTs) are crucial for our understanding of Quantum Field Theory (QFT). Because of their powerful symmetry properties, they play the role of signposts in the space of QFTs. Any method that gives us information about their structure ...
In physics, quantisation (in American English quantization) is the systematic transition procedure from a classical understanding of physical phenomena to a newer understanding known as quantum mechanics. It is a procedure for constructing quantum mechanics from classical mechanics. A generalization involving infinite degrees of freedom is field quantization, as in the "quantization of the electromagnetic field", referring to photons as field "quanta" (for instance as light quanta).
The mathematical formulations of quantum mechanics are those mathematical formalisms that permit a rigorous description of quantum mechanics. This mathematical formalism uses mainly a part of functional analysis, especially Hilbert spaces, which are a kind of linear space. Such are distinguished from mathematical formalisms for physics theories developed prior to the early 1900s by the use of abstract mathematical structures, such as infinite-dimensional Hilbert spaces (L2 space mainly), and operators on these spaces.
We consider finite-level, symmetric quantization procedures for construction and decoding of polar codes. Whether polarization occurs in the presence of quantization is not known in general. Hassani and Urbanke have shown that a simple three-level quantiza ...