In graph theory, a threshold graph is a graph that can be constructed from a one-vertex graph by repeated applications of the following two operations:
Addition of a single isolated vertex to the graph.
Addition of a single dominating vertex to the graph, i.e. a single vertex that is connected to all other vertices.
For example, the graph of the figure is a threshold graph. It can be constructed by beginning with a single-vertex graph (vertex 1), and then adding black vertices as isolated vertices and red vertices as dominating vertices, in the order in which they are numbered.
Threshold graphs were first introduced by . A chapter on threshold graphs appears in , and the book is devoted to them.
An equivalent definition is the following: a graph is a threshold graph if there are a real number and for each vertex a real vertex weight such that for any two vertices , is an edge if and only if .
Another equivalent definition is this: a graph is a threshold graph if there are a real number and for each vertex a real vertex weight such that for any vertex set , is independent if and only if
The name "threshold graph" comes from these definitions: S is the "threshold" for the property of being an edge, or equivalently T is the threshold for being independent.
Threshold graphs also have a forbidden graph characterization: A graph is a threshold graph if and only if it no four of its vertices form an induced subgraph that is a three-edge path graph, a four-edge cycle graph, or a two-edge matching.
From the definition which uses repeated addition of vertices, one can derive an alternative way of uniquely describing a threshold graph, by means of a string of symbols. is always the first character of the string, and represents the first vertex of the graph. Every subsequent character is either , which denotes the addition of an isolated vertex (or union vertex), or , which denotes the addition of a dominating vertex (or join vertex). For example, the string represents a star graph with three leaves, while represents a path on three vertices.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In graph theory, a branch of mathematics, many important families of graphs can be described by a finite set of individual graphs that do not belong to the family and further exclude all graphs from the family which contain any of these forbidden graphs as (induced) subgraph or minor. A prototypical example of this phenomenon is Kuratowski's theorem, which states that a graph is planar (can be drawn without crossings in the plane) if and only if it does not contain either of two forbidden graphs, the complete graph K_5 and the complete bipartite graph K_3,3.
In graph theory, a trivially perfect graph is a graph with the property that in each of its induced subgraphs the size of the maximum independent set equals the number of maximal cliques. Trivially perfect graphs were first studied by but were named by ; Golumbic writes that "the name was chosen since it is trivial to show that such a graph is perfect." Trivially perfect graphs are also known as comparability graphs of trees, arborescent comparability graphs, and quasi-threshold graphs.
In graph theory, a comparability graph is an undirected graph that connects pairs of elements that are comparable to each other in a partial order. Comparability graphs have also been called transitively orientable graphs, partially orderable graphs, containment graphs, and divisor graphs. An incomparability graph is an undirected graph that connects pairs of elements that are not comparable to each other in a partial order.
Given a collection C of curves in the plane, its string graph is defined as the graph with vertex set C, in which two curves in C are adjacent if and only if they intersect. Given a partially ordered set (P,
For a graph G, let nu(s)(G) be the strong matching number of G. We prove the sharp bound nu(s)(G) >= n(G)/9 for every graph G of maximum degree at most 4 and without isolated vertices that does not contain a certain blown-up 5-cycle as a component. This re ...
In threshold graphs one may find weights for the vertices and a threshold value t such that for any subset S of vertices, the sum of the weights is at most the threshold t if and only if the set S is a stable (independent) set. In this note we ask a simila ...