Concept

Graphe trivialement parfait

Résumé
vignette|upright=2| Construction d'un graphe trivialement parfait à partir d'intervalles imbriqués et de la relation d'accessibilité dans un arbre. En théorie des graphes, un graphe trivialement parfait est un graphe qui a la propriété que dans chacun de ses sous-graphes induits, la taille du stable maximal est égale au nombre de cliques maximales. Les graphes trivialement parfaits ont été étudiés pour la première fois par Elliot S. Wolk en 1962; ils ont été nommés ainsi par Golumbic ; Golumbic écrit que « le nom a été choisi car il est trivial de montrer qu'un tel graphique est parfait ». Les graphes trivialement parfaits sont également appelés graphes de comparabilité d'arbres, graphes de comparabilité arborescents, et graphes à quasi-seuil. Les graphes trivialement parfaits ont plusieurs autres caractérisations équivalentes : Ils sont les graphes des arbres de comparabilité des arbres de la théorie des ordres. Autrement dit, soit un ensemble partiellement ordonné tel que pour tout , l'ensemble est bien ordonné par la relation
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (1)
MATH-448: Statistical analysis of network data
A first course in statistical network analysis and applications.
Publications associées (59)
Concepts associés (16)
Graphe à seuil
vignette| Un graphe à seuil. En théorie des graphes, un graphe à seuil est un graphe qui peut être construit, en partant d'un graphe à un seul sommet, par application répétée d'une des deux opérations suivantes : Ajout d'un sommet isolé au graphe. Ajout d'un sommet dominant au graphe, c'est-à-dire d'un sommet connecté à tous les autres sommets. Par exemple, le graphe de la figure ci-contre est un graphe de seuil : il peut être construit en commençant par un graphe à un seul sommet (sommet 1), puis en ajoutant les sept autres dans l'ordre dans lequel ils sont numérotés, les sommets noirs comme sommets isolés et les sommets rouges comme sommets dominants.
Graphe de permutation
En théorie des graphes, un graphe de permutation est un graphe non orienté dont les sommets représentent les éléments d'une permutation, et dont les arêtes relient les paires de sommets qui sont inversés dans la permutation. On peut aussi définir les graphes de permutations de manière géométrique : ce sont les graphes d'intersections de segments dont les extrémités sont sur deux droites parallèles. On définit les graphes de permutation de la manière suivante.
Universal vertex
In graph theory, a universal vertex is a vertex of an undirected graph that is adjacent to all other vertices of the graph. It may also be called a dominating vertex, as it forms a one-element dominating set in the graph. (It is not to be confused with a universally quantified vertex in the logic of graphs.) A graph that contains a universal vertex may be called a cone. In this context, the universal vertex may also be called the apex of the cone.
Afficher plus