Cadherins (named for "calcium-dependent adhesion") are cell adhesion molecules important in forming adherens junctions that let cells adhere to each other. Cadherins are a class of type-1 transmembrane proteins, and they depend on calcium (Ca2+) ions to function, hence their name. Cell-cell adhesion is mediated by extracellular cadherin domains, whereas the intracellular cytoplasmic tail associates with numerous adaptors and signaling proteins, collectively referred to as the cadherin adhesome.
The cadherin family is essential in maintaining cell-cell contact and regulating cytoskeletal complexes. The cadherin superfamily includes cadherins, protocadherins, desmogleins, desmocollins, and more. In structure, they share cadherin repeats, which are the extracellular Ca2+-binding domains. There are multiple classes of cadherin molecules, each designated with a prefix for tissues with which it associates. Classical cadherins maintain the tone of tissues by forming a homodimer in cis while desmosomal cadherins are heterodimeric. The intracellular portion of classical cadherins interacts with a complex of proteins that allows connection to the actin cytoskeleton. Although classical cadherins take a role in cell layer formation and structure formation, desmosomal cadherins focus on resisting cell damage. Desmosomal cadherins maintain the function of desmosomes that is to overturn the mechanical stress of the tissues. Similar to classical cadherins, desmosomal cadherins have a single transmembrane domain, five EC repeats, and an intracellular domain. There are two types of desmosomal cadherins: desmogleins and desmocollins. These contain an intracellular anchor and cadherin like sequence (ICS). The adaptor proteins that associate with desmosomal cadherins are plakoglobin (related to -catenin), plakophilins (p120 catenin subfamily), and desmoplakins. The major function of desmoplakins is to bind to intermediate filament by interacting with plakoglobin, which attach to the ICS of desmogleins, desmocollins and plakophilins.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Students will learn essentials of cell and developmental biology with an engineering mind set, with an emphasis on animal model systems and quantitative approaches.
The objective of this course is to expose students to the fundamentals of mechanobiology. We will highlight the technologies that enable the study of living systems including mechanical manipulation a
The cell membrane (also known as the plasma membrane or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of a cell from the outside environment (the extracellular space). The cell membrane consists of a lipid bilayer, made up of two layers of phospholipids with cholesterols (a lipid component) interspersed between them, maintaining appropriate membrane fluidity at various temperatures.
A desmosome (ˈdɛzməˌsoʊm; "binding body"), also known as a macula adherens (plural: maculae adherentes) (Latin for adhering spot), is a cell structure specialized for cell-to-cell adhesion. A type of junctional complex, they are localized spot-like adhesions randomly arranged on the lateral sides of plasma membranes. Desmosomes are one of the stronger cell-to-cell adhesion types and are found in tissue that experience intense mechanical stress, such as cardiac muscle tissue, bladder tissue, gastrointestinal mucosa, and epithelia.
Catenins are a family of proteins found in complexes with cadherin cell adhesion molecules of animal cells. The first two catenins that were identified became known as α-catenin and β-catenin. α-Catenin can bind to β-catenin and can also bind filamentous actin (F-actin). β-Catenin binds directly to the cytoplasmic tail of classical cadherins. Additional catenins such as γ-catenin and δ-catenin have been identified. The name "catenin" was originally selected ('catena' means 'chain' in Latin) because it was suspected that catenins might link cadherins to the cytoskeleton.
The BCR-ABL1 fusion protein is the cause of chronic myeloid leukemia (CML) and of a significant fraction of adult-onset B cell acute lymphoblastic leukemia (B-ALL) cases. Using mouse models and patient-derived samples, we identified an essential role for γ ...
2019
, ,
The understanding of cell-cell and cell-matrix interactions via receptor and ligand binding relies on our ability to study the very first events of their contact. Of particular interest is the interaction between a T cell receptor and its cognate peptide-m ...
Collective cell migration of epithelial tumor cells is one of the important factors for elucidating cancer metastasis and developing novel drugs for cancer treatment. Especially, new roles of E-cadherin in cancer migration and metastasis, beyond the epithe ...