In mathematics, especially in and homotopy theory, a groupoid (less often Brandt groupoid or virtual group) generalises the notion of group in several equivalent ways. A groupoid can be seen as a:
Group with a partial function replacing the binary operation;
in which every morphism is invertible. A category of this sort can be viewed as augmented with a unary operation on the morphisms, called inverse by analogy with group theory. A groupoid where there is only one object is a usual group.
In the presence of dependent typing, a category in general can be viewed as a typed monoid, and similarly, a groupoid can be viewed as simply a typed group. The morphisms take one from one object to another, and form a dependent family of types, thus morphisms might be typed , , say. Composition is then a total function: , so that .
Special cases include:
Setoids: sets that come with an equivalence relation,
G-sets: sets equipped with an action of a group .
Groupoids are often used to reason about geometrical objects such as manifolds. introduced groupoids implicitly via Brandt semigroups.
A groupoid is an algebraic structure consisting of a non-empty set and a binary partial function '' defined on .
A groupoid is a set with a unary operation and a partial function . Here * is not a binary operation because it is not necessarily defined for all pairs of elements of . The precise conditions under which is defined are not articulated here and vary by situation.
The operations and −1 have the following axiomatic properties: For all , , and in ,
Associativity: If and are defined, then and are defined and are equal. Conversely, if one of or is defined, then they are both defined (and they are equal to each other), and and are also defined.
Inverse: and are always defined.
Identity: If is defined, then , and . (The previous two axioms already show that these expressions are defined and unambiguous.)
Two easy and convenient properties follow from these axioms:
If is defined, then .
A groupoid is a in which every morphism is an isomorphism, i.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The microstructure of many alloys and ceramics are constituted of very fine intricate domains (variants) created by diffusive or displacive phase transformations. The course introduces the crystallogr
This course will provide an introduction to model category theory, which is an abstract framework for generalizing homotopy theory beyond topological spaces and continuous maps. We will study numerous
In mathematics, a group is a non-empty set with an operation that satisfies the following constraints: the operation is associative, has an identity element, and every element of the set has an inverse element. Many mathematical structures are groups endowed with other properties. For example, the integers with the addition operation is an infinite group, which is generated by a single element called 1 (these properties characterize the integers in a unique way).
In mathematics, a category (sometimes called an abstract category to distinguish it from a ) is a collection of "objects" that are linked by "arrows". A category has two basic properties: the ability to compose the arrows associatively and the existence of an identity arrow for each object. A simple example is the , whose objects are sets and whose arrows are functions. is a branch of mathematics that seeks to generalize all of mathematics in terms of categories, independent of what their objects and arrows represent.
In mathematics, the free group FS over a given set S consists of all words that can be built from members of S, considering two words to be different unless their equality follows from the group axioms (e.g. st = suu−1t, but s ≠ t−1 for s,t,u ∈ S). The members of S are called generators of FS, and the number of generators is the rank of the free group. An arbitrary group G is called free if it is isomorphic to FS for some subset S of G, that is, if there is a subset S of G such that every element of G can be written in exactly one way as a product of finitely many elements of S and their inverses (disregarding trivial variations such as st = suu−1t).
Phase synchronizations in models of coupled oscillators such as the Kuramoto model have been widely studied with pairwise couplings on arbitrary topologies, showing many unexpected dynamical behaviors. Here, based on a recent formulation the Kuramoto model ...
NATURE PORTFOLIO2022
Two Lie algebroids are presented that are linked to the construction of the linearizing output of an affine in the input nonlinear system.\ The algorithmic construction of the linearizing output proceeds inductively, and each stage has two structures, name ...
2019
In this thesis, we study the homotopical relations of 2-categories, double categories, and their infinity-analogues. For this, we construct homotopy theories for the objects of interest, and show that there are homotopically full embeddings of 2-categories ...