In mathematics, in the area of abstract algebra known as Galois theory, the Galois group of a certain type of field extension is a specific group associated with the field extension. The study of field extensions and their relationship to the polynomials that give rise to them via Galois groups is called Galois theory, so named in honor of Évariste Galois who first discovered them.
For a more elementary discussion of Galois groups in terms of permutation groups, see the article on Galois theory.
Suppose that is an extension of the field (written as and read "E over F "). An automorphism of is defined to be an automorphism of that fixes pointwise. In other words, an automorphism of is an isomorphism such that for each . The set of all automorphisms of forms a group with the operation of function composition. This group is sometimes denoted by
If is a Galois extension, then is called the Galois group of , and is usually denoted by .
If is not a Galois extension, then the Galois group of is sometimes defined as , where is the Galois closure of .
Another definition of the Galois group comes from the Galois group of a polynomial . If there is a field such that factors as a product of linear polynomials
over the field , then the Galois group of the polynomial is defined as the Galois group of where is minimal among all such fields.
One of the important structure theorems from Galois theory comes from the fundamental theorem of Galois theory. This states that given a finite Galois extension , there is a bijection between the set of subfields and the subgroups Then, is given by the set of invariants of under the action of , so
Moreover, if is a normal subgroup then . And conversely, if is a normal field extension, then the associated subgroup in is a normal group.
Suppose are Galois extensions of with Galois groups The field with Galois group has an injection which is an isomorphism whenever .
As a corollary, this can be inducted finitely many times.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Galois theory aims at describing the algebraic symmetries of fields. After reviewing the basic material (from the 2nd year course "Ring and Fields") and in particular the Galois correspondence, we wi
Algebraic number theory is the study of the properties of solutions of polynomial equations with integral coefficients; Starting with concrete problems, we then introduce more general notions like alg
In mathematics, a group is a non-empty set with an operation that satisfies the following constraints: the operation is associative, has an identity element, and every element of the set has an inverse element. Many mathematical structures are groups endowed with other properties. For example, the integers with the addition operation is an infinite group, which is generated by a single element called 1 (these properties characterize the integers in a unique way).
In mathematics, rings are algebraic structures that generalize fields: multiplication need not be commutative and multiplicative inverses need not exist. In other words, a ring is a set equipped with two binary operations satisfying properties analogous to those of addition and multiplication of integers. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series.
In mathematics, Galois theory, originally introduced by Évariste Galois, provides a connection between field theory and group theory. This connection, the fundamental theorem of Galois theory, allows reducing certain problems in field theory to group theory, which makes them simpler and easier to understand. Galois introduced the subject for studying roots of polynomials.
In this paper, we consider decoding of loss tolerant data encoded by network coding and transmitted over error-prone networks. Intermediate network nodes typically perform the random linear network coding in a Galois field and a Gaussian elimination is use ...
Cohomological Invariants for G-Galois Algebras and Self-Dual Normal Bases. We define degree two cohomological invariants for G-Galois algebras over fields of characteristic not 2, and use them to give necessary conditions for the existence of a self--dua ...
Euclidean lattices are mathematical objects of increasing interest in the fields of cryptography and error-correcting codes. This doctoral thesis is a study on high-dimensional lattices with the motivation to understand how efficient they are in terms of b ...