In mathematics, Galois theory, originally introduced by Évariste Galois, provides a connection between field theory and group theory. This connection, the fundamental theorem of Galois theory, allows reducing certain problems in field theory to group theory, which makes them simpler and easier to understand.
Galois introduced the subject for studying roots of polynomials. This allowed him to characterize the polynomial equations that are solvable by radicals in terms of properties of the permutation group of their roots—an equation is solvable by radicals if its roots may be expressed by a formula involving only integers, nth roots, and the four basic arithmetic operations. This widely generalizes the Abel–Ruffini theorem, which asserts that a general polynomial of degree at least five cannot be solved by radicals.
Galois theory has been used to solve classic problems including showing that two problems of antiquity cannot be solved as they were stated (doubling the cube and trisecting the angle), and characterizing the regular polygons that are constructible (this characterization was previously given by Gauss, but all known proofs that this characterization is complete require Galois theory).
Galois' work was published by Joseph Liouville fourteen years after his death. The theory took longer to become popular among mathematicians and to be well understood.
Galois theory has been generalized to Galois connections and Grothendieck's Galois theory.
The birth and development of Galois theory was caused by the following question, which was one of the main open mathematical questions until the beginning of 19th century:
Does there exist a formula for the roots of a fifth (or higher) degree polynomial equation in terms of the coefficients of the polynomial, using only the usual algebraic operations (addition, subtraction, multiplication, division) and application of radicals (square roots, cube roots, etc)?
The Abel–Ruffini theorem provides a counterexample proving that there are polynomial equations for which such a formula cannot exist.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The theme of the working group varies from year to year. Examples of recent topics studied include: Galois theory of ring spectra, duality in algebra and topology, topological algebraic geometry and t
Après une introduction à la théorie des catégories, nous appliquerons la théorie générale au cas particulier des groupes, ce qui nous permettra de bien mettre en perspective des notions telles que quo
Galois theory aims at describing the algebraic symmetries of fields. After reviewing the basic material (from the 2nd year course "Ring and Fields") and in particular the Galois correspondence, we wi
In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures. Algebraic structures include groups, rings, fields, modules, vector spaces, lattices, and algebras over a field. The term abstract algebra was coined in the early 20th century to distinguish it from older parts of algebra, and more specifically from elementary algebra, the use of variables to represent numbers in computation and reasoning.
The fundamental theorem of algebra, also known as d'Alembert's theorem, or the d'Alembert–Gauss theorem, states that every non-constant single-variable polynomial with complex coefficients has at least one complex root. This includes polynomials with real coefficients, since every real number is a complex number with its imaginary part equal to zero. Equivalently (by definition), the theorem states that the field of complex numbers is algebraically closed.
Évariste Galois (gælˈwɑː; evaʁist ɡalwa; 25 October 1811 – 31 May 1832) was a French mathematician and political activist. While still in his teens, he was able to determine a necessary and sufficient condition for a polynomial to be solvable by radicals, thereby solving a problem that had been open for 350 years. His work laid the foundations for Galois theory and group theory, two major branches of abstract algebra. He was a staunch republican and was heavily involved in the political turmoil that surrounded the French Revolution of 1830.
We solve the Bin Packing problem in O^*(2^k) time, where k is the number of items less or equal to one third of the bin capacity. This parameter measures the distance from the polynomially solvable case of only large (i.e., greater than one third) items. O ...
Schloss Dagstuhl – Leibniz-Zentrum fur Informatik2022
In this thesis, we investigate the inverse problem of trees and barcodes from a combinatorial, geometric, probabilistic and statistical point of view.Computing the persistent homology of a merge tree yields a barcode B. Reconstructing a tree from B involve ...
EPFL2022
The isentropic vortex problem is frequently solved to test the accuracy of numerical methods and verify corresponding code. Unfortunately, its existing solution was derived in the relativistic magnetohydrodynamics by numerically solving an ordinary differe ...