Résumé
En mathématiques, et plus spécifiquement en algèbre dans le cadre de la théorie de Galois, le groupe de Galois d'une extension de corps L sur un corps K est le groupe des automorphismes de corps de L laissant K invariant. Le groupe de Galois est souvent noté Gal(L/K). Si l'extension possède de bonnes propriétés, c’est-à-dire si elle est séparable et normale, on parle alors d'extension de Galois et les hypothèses du théorème fondamental de la théorie de Galois sont réunies. Il existe alors une bijection entre les sous-corps de L et les sous-groupes du groupe de Galois Gal(L/K). La correspondance permet une compréhension profonde de la structure de l'extension. Un exemple important est le théorème d'Abel, il donne une condition nécessaire et suffisante de résolution par radicaux d'une équation algébrique. Théorème d'Abel (algèbre)#Histoirehistoire du théorème d'Abel Si l'histoire de la théorie des équations algébriques remonte à la nuit des temps, en revanche l'introduction du concept de groupe date du . Joseph-Louis Lagrange met en évidence la relation entre les propriétés des permutations des racines et la possibilité de résolution d'une équation cubique ou quartique. Paolo Ruffini est le premier à comprendre que l'équation générale et particulièrement l'équation quintique n'admet pas de solution. Sa démonstration reste lacunaire. Les démonstrations de Niels Henrik Abel, dans deux articles écrits en 1824 et 1826 passent, après des années d'incompréhension, à la postérité. Cependant la notion de groupe abstrait n'apparaît pas encore et le théorème reste incomplet. Évariste Galois résout définitivement la problématique en proposant une condition nécessaire et suffisante juste pour la résolubilité de l'équation par radicaux. Son approche subit la même incompréhension que ses prédécesseurs. Ses premiers écrits, présentés à l'Académie des sciences dès 1829, sont définitivement perdus. Un article de l'auteur écrit en 1830 est découvert par Joseph Liouville qui le présente à la communauté scientifique en 1843 en ces termes: « .
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.