Concept

Quadrature of the Parabola

Quadrature of the Parabola (Τετραγωνισμὸς παραβολῆς) is a treatise on geometry, written by Archimedes in the 3rd century BC and addressed to his Alexandrian acquaintance Dositheus. It contains 24 propositions regarding parabolas, culminating in two proofs showing that the area of a parabolic segment (the region enclosed by a parabola and a line) is that of a certain inscribed triangle. It is one of the best-known works of Archimedes, in particular for its ingenious use of the method of exhaustion and in the second part of a geometric series. Archimedes dissects the area into infinitely many triangles whose areas form a geometric progression. He then computes the sum of the resulting geometric series, and proves that this is the area of the parabolic segment. This represents the most sophisticated use of a reductio ad absurdum argument in ancient Greek mathematics, and Archimedes' solution remained unsurpassed until the development of integral calculus in the 17th century, being succeeded by Cavalieri's quadrature formula. A parabolic segment is the region bounded by a parabola and line. To find the area of a parabolic segment, Archimedes considers a certain inscribed triangle. The base of this triangle is the given chord of the parabola, and the third vertex is the point on the parabola such that the tangent to the parabola at that point is parallel to the chord. Proposition 1 of the work states that a line from the third vertex drawn parallel to the axis divides the chord into equal segments. The main theorem claims that the area of the parabolic segment is that of the inscribed triangle. Conic sections such as the parabola were already well known in Archimedes' time thanks to Menaechmus a century earlier. However, before the advent of the differential and integral calculus, there were no easy means to find the area of a conic section. Archimedes provides the first attested solution to this problem by focusing specifically on the area bounded by a parabola and a chord.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (4)
MATH-189: Mathematics
Ce cours a pour but de donner les fondements de mathématiques nécessaires à l'architecte contemporain évoluant dans une école polytechnique.
MATH-126: Geometry for architects II
Ce cours traite des 3 sujets suivants : la perspective, la géométrie descriptive, et une initiation à la géométrie projective.
MATH-451: Numerical approximation of PDEs
The course is about the derivation, theoretical analysis and implementation of the finite element method for the numerical approximation of partial differential equations in one and two space dimens
Show more
Related lectures (41)
Numerical Analysis: Quadrature Formulas
Explores the theory and application of quadrature formulas for numerical analysis.
Hyperboloid Surfaces: Sections and Developability
Delves into the properties of hyperboloid surfaces and their sections, emphasizing developability and curvature.
Finite Element Method: Basis Functions
Explains the construction of basis functions in the Finite Element Method, focusing on local to global mapping and numerical accuracy.
Show more
Related publications (8)

Cohomology in singular blocks of parabolic category O

Jonathan Gruber

We determine the dimensions of Ext -groups between simple modules and dual generalized Verma modules in singular blocks of parabolic versions of category O for complex semisimple Lie algebras and affine Kac-Moody algebras. ...
2023

PDE-constrained optimal control problems with uncertain parameters using SAGA

Fabio Nobile, Matthieu Claude Martin

We consider an optimal control problem for an elliptic partial differential equation (PDE) with random coefficients. The control function is a deterministic, distributed forcing term that minimizes an expected quadratic regularized loss functional. We cons ...
2018

Solving Stochastic Ordinary Differential Equations by Monte Carlo and Polynomial Chaos

Gilles Brunner

In this project, we study and compare two methods to solve stochastic ordinary differential equations. The first is the Monte Carlo method and the second uses Polynomial Chaos. In the first part, we will solve a stochastic ordinary differential equation by ...
2013
Show more
Related people (1)
Related concepts (12)
Geometry
Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician who works in the field of geometry is called a geometer. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point, line, plane, distance, angle, surface, and curve, as fundamental concepts.
Conic section
A conic section, conic or a quadratic curve is a curve obtained from a cone's surface intersecting a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a special case of the ellipse, though it was sometimes called as a fourth type. The ancient Greek mathematicians studied conic sections, culminating around 200 BC with Apollonius of Perga's systematic work on their properties. The conic sections in the Euclidean plane have various distinguishing properties, many of which can be used as alternative definitions.
Geometric series
In mathematics, a geometric series is the sum of an infinite number of terms that have a constant ratio between successive terms. For example, the series is geometric, because each successive term can be obtained by multiplying the previous term by . In general, a geometric series is written as , where is the coefficient of each term and is the common ratio between adjacent terms.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.