In group theory, a word metric on a discrete group is a way to measure distance between any two elements of . As the name suggests, the word metric is a metric on , assigning to any two elements , of a distance that measures how efficiently their difference can be expressed as a word whose letters come from a generating set for the group. The word metric on G is very closely related to the Cayley graph of G: the word metric measures the length of the shortest path in the Cayley graph between two elements of G.
A generating set for must first be chosen before a word metric on is specified. Different choices of a generating set will typically yield different word metrics. While this seems at first to be a weakness in the concept of the word metric, it can be exploited to prove theorems about geometric properties of groups, as is done in geometric group theory.
The group of integers Z is generated by the set {-1,+1}. The integer -3 can be expressed as -1-1-1+1-1, a word of length 5 in these generators. But the word that expresses -3 most efficiently is -1-1-1, a word of length 3. The distance between 0 and -3 in the word metric is therefore equal to 3. More generally, the distance between two integers m and n in the word metric is equal to |m-n|, because the shortest word representing the difference m-n has length equal to |m-n|.
For a more illustrative example, the elements of the group can be thought of as vectors in the Cartesian plane with integer coefficients. The group is generated by the standard unit vectors , and their inverses , . The Cayley graph of is the so-called taxicab geometry. It can be pictured in the plane as an infinite square grid of city streets, where each horizontal and vertical line with integer coordinates is a street, and each point of lies at the intersection of a horizontal and a vertical street. Each horizontal segment between two vertices represents the generating vector or , depending on whether the segment is travelled in the forward or backward direction, and each vertical segment represents or .
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The goal of this course/seminar is to introduce the students to some contemporary aspects of geometric group theory. Emphasis will be put on Artin's Braid groups and Thompson's groups.
In mathematics, a quasi-isometry is a function between two metric spaces that respects large-scale geometry of these spaces and ignores their small-scale details. Two metric spaces are quasi-isometric if there exists a quasi-isometry between them. The property of being quasi-isometric behaves like an equivalence relation on the class of metric spaces. The concept of quasi-isometry is especially important in geometric group theory, following the work of Gromov.
In mathematics, a Cayley graph, also known as a Cayley color graph, Cayley diagram, group diagram, or color group, is a graph that encodes the abstract structure of a group. Its definition is suggested by Cayley's theorem (named after Arthur Cayley), and uses a specified set of generators for the group. It is a central tool in combinatorial and geometric group theory. The structure and symmetry of Cayley graphs makes them particularly good candidates for constructing families of expander graphs.
Geometric group theory is an area in mathematics devoted to the study of finitely generated groups via exploring the connections between algebraic properties of such groups and topological and geometric properties of spaces on which these groups act (that is, when the groups in question are realized as geometric symmetries or continuous transformations of some spaces). Another important idea in geometric group theory is to consider finitely generated groups themselves as geometric objects.
The goal of this thesis is to introduce the notions of Royden algebra and mapping with bounded p-dilation between metric measure spaces. In particular, we give sufficient conditions for a metric measure space to be characterized, up to bilipschitz equivale ...
The objective of this series is to study metric geometric properties of disjoint unions of Cayley graphs of amenable groups by group properties of the Cayley accumulation points in the space of marked groups. In this Part II, we prove that a disjoint union ...
Water distribution systems (WDSs) are complex networks with numerous interconnected junctions and pipes. The robustness and reliability of these systems are critically dependent on their network structure, necessitating detailed analysis for proactive leak ...