In mathematics, a Cayley graph, also known as a Cayley color graph, Cayley diagram, group diagram, or color group, is a graph that encodes the abstract structure of a group. Its definition is suggested by Cayley's theorem (named after Arthur Cayley), and uses a specified set of generators for the group. It is a central tool in combinatorial and geometric group theory. The structure and symmetry of Cayley graphs makes them particularly good candidates for constructing families of expander graphs.
Let be a group and be a generating set of . The Cayley graph is an edge-colored directed graph constructed as follows:
Each element of is assigned a vertex: the vertex set of is identified with
Each element of is assigned a color .
For every and , there is a directed edge of color from the vertex corresponding to to the one corresponding to .
Not every source requires that generate the group. If is not a generating set for , then is disconnected and each connected component represents a coset of the subgroup generated by .
If an element of is its own inverse, then it is typically represented by an undirected edge.
The set is sometimes assumed to be symmetric (i.e. ) and not containing the identity element of the group. In this case, the uncolored Cayley graph can be represented as a simple undirected graph.
In geometric group theory, the set is often assumed to be finite which corresponds to being locally finite.
Suppose that is the infinite cyclic group and the set consists of the standard generator 1 and its inverse (−1 in the additive notation); then the Cayley graph is an infinite path.
Similarly, if is the finite cyclic group of order and the set consists of two elements, the standard generator of and its inverse, then the Cayley graph is the cycle . More generally, the Cayley graphs of finite cyclic groups are exactly the circulant graphs.
The Cayley graph of the direct product of groups (with the cartesian product of generating sets as a generating set) is the cartesian product of the corresponding Cayley graphs.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In group theory, Cayley's theorem, named in honour of Arthur Cayley, states that every group G is isomorphic to a subgroup of a symmetric group. More specifically, G is isomorphic to a subgroup of the symmetric group whose elements are the permutations of the underlying set of G. Explicitly, for each , the left-multiplication-by-g map sending each element x to gx is a permutation of G, and the map sending each element g to is an injective homomorphism, so it defines an isomorphism from G onto a subgroup of .
In mathematics, especially in the area of abstract algebra known as combinatorial group theory, the word problem for a finitely generated group G is the algorithmic problem of deciding whether two words in the generators represent the same element. More precisely, if A is a finite set of generators for G then the word problem is the membership problem for the formal language of all words in A and a formal set of inverses that map to the identity under the natural map from the free monoid with involution on A to the group G.
In the mathematical field of graph theory, a vertex-transitive graph is a graph G in which, given any two vertices v_1 and v_2 of G, there is some automorphism such that In other words, a graph is vertex-transitive if its automorphism group acts transitively on its vertices. A graph is vertex-transitive if and only if its graph complement is, since the group actions are identical. Every symmetric graph without isolated vertices is vertex-transitive, and every vertex-transitive graph is regular.
This course covers the statistical physics approach to computer science problems ranging from graph theory and constraint satisfaction to inference and machine learning. In particular the replica and
This course offers an introduction to control systems using communication networks for interfacing sensors, actuators, controllers, and processes. Challenges due to network non-idealities and opportun
Translation elongation plays an important role in regulating protein concentrations in the cell, and dysregulation of this process has been linked to several human diseases. In this study, we use data from ribo-seq experiments to model ribosome dwell times ...
2024
Water distribution systems (WDSs) are complex networks with numerous interconnected junctions and pipes. The robustness and reliability of these systems are critically dependent on their network structure, necessitating detailed analysis for proactive leak ...
Basel2024
, , , , , ,
Due to its high parallelism, belief propagation (BP)decoding is amenable to high-throughput applications and thusrepresents a promising solution for the ultra-high peak datarate required by future communication systems. To bridge theperformance gap compare ...