Summary
A growth factor is a naturally occurring substance capable of stimulating cell proliferation, wound healing, and occasionally cellular differentiation. Usually it is a secreted protein or a steroid hormone. Growth factors are important for regulating a variety of cellular processes. Growth factors typically act as signaling molecules between cells. Examples are cytokines and hormones that bind to specific receptors on the surface of their target cells. They often promote cell differentiation and maturation, which varies between growth factors. For example, epidermal growth factor (EGF) enhances osteogenic differentiation (osteogenesis or bone formation), while fibroblast growth factors and vascular endothelial growth factors stimulate blood vessel differentiation (angiogenesis). Growth factor is sometimes used interchangeably among scientists with the term cytokine. Historically, cytokines were associated with hematopoietic (blood and lymph forming) cells and immune system cells (e.g., lymphocytes and tissue cells from spleen, thymus, and lymph nodes). For the circulatory system and bone marrow in which cells can occur in a liquid suspension and not bound up in solid tissue, it makes sense for them to communicate by soluble, circulating protein molecules. However, as different lines of research converged, it became clear that some of the same signaling proteins which the hematopoietic and immune systems use were also being used by all sorts of other cells and tissues, during development and in the mature organism. While growth factor implies a positive effect on cell proliferation, cytokine is a neutral term with respect to whether a molecule affects proliferation. While some cytokines can be growth factors, such as G-CSF and GM-CSF, others have an inhibitory effect on cell growth or cell proliferation. Some cytokines, such as Fas ligand, are used as "death" signals; they cause target cells to undergo programmed cell death or apoptosis. The nerve growth factor (NGF) was first discovered by Rita Levi-Montalcini, which won her a Nobel Prize in Physiology or Medicine.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (15)
BIO-392: Oncology
This course provides a comprehensive overview of the biology of cancer, illustrating the mechanisms that cancer cells use to grow and disseminate at the expense of normal tissues and organs.
ChE-433: Biotechnology lab (for CGC)
This laboratory-training course is designed to give students a comprehensive insight into laboratory research techniques in the field of biotechnology and pharmaceutical biotechnology with practices e
BIOENG-110: General Biology
Le but du cours est de fournir un aperçu général de la biologie des cellules et des organismes. Nous en discuterons dans le contexte de la vie des cellules et des organismes, en mettant l'accent sur l
Show more
Related lectures (41)
Proteins and Cell Structures
Covers proteins' structures, cell functions, cytoskeleton, tissue engineering, and ligands.
Cell Signalling: Receptors and Pathways
Explores cell signalling mechanisms, including receptors, pathways, and signal transduction for gene regulation and cellular responses.
Ordinary Differential Equations: Growth Factors and Stability
Explores ordinary differential equations in biology, emphasizing growth factors and predator-prey system stability.
Show more
Related publications (425)
Related concepts (35)
Signal transduction
Signal transduction is the process by which a chemical or physical signal is transmitted through a cell as a series of molecular events. Most commonly, protein phosphorylation is catalyzed by protein kinases, ultimately resulting in a cellular response. Proteins responsible for detecting stimuli are generally termed receptors, although in some cases the term sensor is used. The changes elicited by ligand binding (or signal sensing) in a receptor give rise to a biochemical cascade, which is a chain of biochemical events known as a signaling pathway.
Cell signaling
In biology, cell signaling (cell signalling in British English) or cell communication is the ability of a cell to receive, process, and transmit signals with its environment and with itself. Cell signaling is a fundamental property of all cellular life in prokaryotes and eukaryotes. Signals that originate from outside a cell (or extracellular signals) can be physical agents like mechanical pressure, voltage, temperature, light, or chemical signals (e.g., small molecules, peptides, or gas).
Macrophage
Macrophages (abbreviated as Mφ, MΦ or MP) (large eaters, from Greek μακρός (makrós) = large, φαγεῖν (phagein) = to eat) are a type of white blood cell of the innate immune system that engulf and digest pathogens, such as cancer cells, microbes, cellular debris, and foreign substances, which do not have proteins that are specific to healthy body cells on their surface. This process is called phagocytosis, which acts to defend the host against infection and injury.
Show more