In condensed matter physics, magnetic anisotropy describes how an object's magnetic properties can be different depending on direction. In the simplest case, there is no preferential direction for an object's magnetic moment. It will respond to an applied magnetic field in the same way, regardless of which direction the field is applied. This is known as magnetic isotropy. In contrast, magnetically anisotropic materials will be easier or harder to magnetize depending on which way the object is rotated.
For most magnetically anisotropic materials, there are two easiest directions to magnetize the material, which are a 180° rotation apart. The line parallel to these directions is called the easy axis. In other words, the easy axis is an energetically favorable direction of spontaneous magnetization. Because the two opposite directions along an easy axis are usually equivalently easy to magnetize along, the actual direction of magnetization can just as easily settle into either direction, which is an example of spontaneous symmetry breaking.
Magnetic anisotropy is a prerequisite for hysteresis in ferromagnets: without it, a ferromagnet is superparamagnetic.
The observed magnetic anisotropy in an object can happen for several different reasons. Rather than having a single cause, the overall magnetic anisotropy of a given object is often explained by a combination of these different factors:
Magnetocrystalline anisotropy The atomic structure of a crystal introduces preferential directions for the magnetization.
Shape anisotropy When a particle is not perfectly spherical, the demagnetizing field will not be equal for all directions, creating one or more easy axes.
Magnetoelastic anisotropy Tension may alter magnetic behaviour, leading to magnetic anisotropy.
Exchange anisotropy Occurs when antiferromagnetic and ferromagnetic materials interact.
The magnetic anisotropy of a benzene ring (A), alkene (B), carbonyl (C), alkyne (D), and a more complex molecule (E) are shown in the figure.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In magnetism, single domain refers to the state of a ferromagnet (in the broader meaning of the term that includes ferrimagnetism) in which the magnetization does not vary across the magnet. A magnetic particle that stays in a single domain state for all magnetic fields is called a single domain particle (but other definitions are possible; see below). Such particles are very small (generally below a micrometre in diameter). They are also very important in a lot of applications because they have a high coercivity.
A magnetic domain is a region within a magnetic material in which the magnetization is in a uniform direction. This means that the individual magnetic moments of the atoms are aligned with one another and they point in the same direction. When cooled below a temperature called the Curie temperature, the magnetization of a piece of ferromagnetic material spontaneously divides into many small regions called magnetic domains. The magnetization within each domain points in a uniform direction, but the magnetization of different domains may point in different directions.
A rare-earth magnet is a strong permanent magnet made from alloys of rare-earth elements. Developed in the 1970s and 1980s, rare-earth magnets are the strongest type of permanent magnets made, producing significantly stronger magnetic fields than other types such as ferrite or alnico magnets. The magnetic field typically produced by rare-earth magnets can exceed 1.2 teslas, whereas ferrite or ceramic magnets typically exhibit fields of 0.5 to 1 tesla. There are two types: neodymium magnets and samarium–cobalt magnets.
Interactive course addressing bulk and thin-film magnetic materials that provide application-specific functionalities in different modern technologies such as e.g. wind energy harvesting, electric art
The properties of crystals and polycrystalline (ceramic) materials including electrical, thermal and electromechanical phenomena are studied in connection with structures, point defects and phase rela
The course is conceived in the perspective of understanding the fundamentals of spintronics. This implies learning about magnetism at the quantum mechanical level, mechanisms for spin relaxation and
We report a soft actuator that generates continuous rotation of an object placed on it by electromagnetically exciting circular travelling waves in a soft disk. The disk, that serves as the stator, is made of a stretchable composite consisting of segments ...
Iop Publishing Ltd2024
We study the statistical mechanics and the equilibrium dynamics of a system of classical Heisenberg spins with frustrated interactions on a d -dimensional simple hypercubic lattice, in the limit of infinite dimensionality d -> infinity . In the analysis we ...
Diode effects are of great interest for both fundamental physics and modern technologies. Electrical diode effects (nonreciprocal transport) have been observed in Weyl systems. Optical diode effects arising from the Weyl fermions have been theoretically co ...