Desorption electrospray ionization (DESI) is an ambient ionization technique that can be coupled to mass spectrometry (MS) for chemical analysis of samples at atmospheric conditions. Coupled ionization sources-MS systems are popular in chemical analysis because the individual capabilities of various sources combined with different MS systems allow for chemical determinations of samples. DESI employs a fast-moving charged solvent stream, at an angle relative to the sample surface, to extract analytes from the surfaces and propel the secondary ions toward the mass analyzer. This tandem technique can be used to analyze forensics analyses, pharmaceuticals, plant tissues, fruits, intact biological tissues, enzyme-substrate complexes, metabolites and polymers. Therefore, DESI-MS may be applied in a wide variety of sectors including food and drug administration, pharmaceuticals, environmental monitoring, and biotechnology.
DESI has been widely studied since its inception in 2004 by Zoltan Takáts, Justin Wiseman and Bogdan Gologan, in Graham Cooks' group from Purdue University with the goal of looking into methods that didn't require the sample to be inside of a vacuum. Both DESI and direct analysis in real time (DART) have been largely responsible for the rapid growth in ambient ionization techniques, with a proliferation of more than eighty new techniques being found today. These methods allow for complex systems to be analyzed without preparation and throughputs as high as 45 samples a minute. DESI is a combination of popular techniques, such as, electrospray ionization and surface desorption techniques. Electrospray ionization with mass spectrometry was reported by Malcolm Dole in 1968, but John Bennett Fenn was awarded a nobel prize in chemistry for the development of ESI-MS in the late 1980s. Then in 1999, desorption of open surface and free matrix experiments were reported in the literature utilizing an experiment that was called desorption/ionization on silicon.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The goal is to provide students with a complete overview of the principles and key applications of modern mass spectrometry and meet the current practical demand of EPFL researchers to improve structu
The aim of this course is to treat three of the major techniques for structural characterization of molecules: mass spectrometry, NMR, and X-ray techniques.
In systems biology, proteomics represents an essential pillar. The understanding of protein function and regulation provides key information to decipher the complexity of living systems. Proteomic tec
Mass spectrometry (MS) is an analytical technique that is used to measure the mass-to-charge ratio of ions. The results are presented as a mass spectrum, a plot of intensity as a function of the mass-to-charge ratio. Mass spectrometry is used in many different fields and is applied to pure samples as well as complex mixtures. A mass spectrum is a type of plot of the ion signal as a function of the mass-to-charge ratio.
Analytical chemistry studies and uses instruments and methods to separate, identify, and quantify matter. In practice, separation, identification or quantification may constitute the entire analysis or be combined with another method. Separation isolates analytes. Qualitative analysis identifies analytes, while quantitative analysis determines the numerical amount or concentration. Analytical chemistry consists of classical, wet chemical methods and modern, instrumental methods.
Covers protein mass spectrometry, proteomics fundamentals, ionization sources, analyzers, detectors, mass accuracy, resolution, and various ionization methods.
Explores heterogeneous catalysis, focusing on reaction mechanisms, kinetics, and ammonia synthesis.
On Mass Spectrometry explores ionization principles, mass sorting techniques, and various mass analyzers.
This dataset contains the bulk size-resolved chemical composition and mass concentration of non-refractory submicron aerosols (NR-PM1) measured during the MOSAiC expedition from October 2019 to July 2020. These include the mass concentrations of sulfate (S ...
Control of nanomaterial dimensions with atomic precision through synthetic methods is essential to understanding and engineering of nanomaterials. For single-layer inorganic materials, size and shape controls have been achieved by self-assembly and surface ...
Weinheim2024
, ,
The control of movement and orientation of gas-phase molecules has become the focus of many research areas in molecular physics. Here, ND3 molecules are polarized in a segmented, curved electrostatic guide and adiabatically aligned inside a rotatable mass ...