Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
thumb|right|Spectromètre de masse La spectrométrie de masse est une technique physique d'analyse permettant de détecter et d'identifier des molécules d’intérêt par mesure de leur masse, et de caractériser leur structure chimique. Son principe réside dans la séparation en phase gazeuse de molécules chargées (ions) en fonction de leur rapport masse/charge (m/z). Elle est utilisée dans pratiquement tous les domaines scientifiques : physique, astrophysique, chimie en phase gazeuse, chimie organique, dosages, biologie, médecine, archéologie... Le temps de détection est très rapide. thumb|upright=2|Structure d’un spectromètre de masse. Le spectromètre de masse, initialement conçu par le Britannique Joseph John Thomson, comporte une source d'ionisation suivie d'un ou plusieurs analyseurs qui séparent les ions produits selon leur rapport m/z, d'un détecteur qui compte les ions et amplifie le signal, et enfin d'un système informatique pour traiter le signal. Le résultat obtenu est un spectre de masse représentant les rapports m/z, où m représente la masse et z la valence (ou m/q, q représentant la charge) des ions détectés selon l'axe des abscisses et l'abondance relative de ces ions selon l'axe des ordonnées. Le spectromètre de masse se compose donc de quatre parties : le système d’introduction de l’échantillon : l’échantillon peut être introduit directement dans la source, sous forme gazeuse, liquide (infusion directe) ou solide (canne d’introduction directe, dépôt sur plaque MALDI...) ou encore par l'association à une méthode séparative (chromatographie en phase liquide, chromatographie en phase gazeuse, électrophorèse capillaire...) ; la source d'ionisation : elle consiste à vaporiser les molécules et à les ioniser. Une source d'ionisation peut être utilisée soit en mode positif pour étudier les ions positifs, soit en mode négatif pour étudier les ions négatifs.
Aïcha Hessler-Wyser, Johann Michler, Amit Sharma, Caroline Hain, Daniele Casari, Thomas Nelis
Yury Tsybin, Natalia Gasilova, Laure Menin, Anton Kozhinov, Konstantin Nagornov