Summary
Continuous-wave radar (CW radar) is a type of radar system where a known stable frequency continuous wave radio energy is transmitted and then received from any reflecting objects. Individual objects can be detected using the Doppler effect, which causes the received signal to have a different frequency from the transmitted signal, allowing it to be detected by filtering out the transmitted frequency. Doppler-analysis of radar returns can allow the filtering out of slow or non-moving objects, thus offering immunity to interference from large stationary objects and slow-moving clutter. This makes it particularly useful for looking for objects against a background reflector, for instance, allowing a high-flying aircraft to look for aircraft flying at low altitude against the background of the surface. Because the very strong reflection off the surface can be filtered out, the much smaller reflection from a target can still be seen. CW radar systems are used at both ends of the range spectrum. Inexpensive radio-altimeters, proximity sensors and sport accessories that operate from a few dozen feet to several kilometers Costly early-warning CW angle track (CWAT) radar operating beyond 100 km for use with surface-to-air missile systems The main advantage of CW radar is that energy is not pulsed so these are much simpler to manufacture and operate. They have no minimum or maximum range, although the broadcast power level imposes a practical limit on range. Continuous-wave radar maximize total power on a target because the transmitter is broadcasting continuously. The military uses continuous-wave radar to guide semi-active radar homing (SARH) air-to-air missiles, such as the U.S. AIM-7 Sparrow and the Standard missile family. The launch aircraft illuminates the target with a CW radar signal, and the missile homes in on the reflected radio waves. Since the missile is moving at high velocities relative to the aircraft, there is a strong Doppler shift. Most modern air combat radars, even pulse Doppler sets, have a CW function for missile guidance purposes.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (2)
EE-445: Microwaves, the basics of wireless communications
This course is an introduction to microwaves and microwave passive circuits. A special attention is given to the introduction of the notion of distributed circuits and to the scattering matrix
COM-405: Mobile networks
This course provides a detailed description of the organization and operating principles of mobile and wireless communication networks.
Related publications (59)
Related concepts (4)
Radio
Radio is the technology of signaling and communicating using radio waves. Radio waves are electromagnetic waves of frequency between 3 hertz (Hz) and 3,000 gigahertz (GHz). They are generated by an electronic device called a transmitter connected to an antenna which radiates the waves, and received by another antenna connected to a radio receiver. Radio is widely used in modern technology, in radio communication, radar, radio navigation, remote control, remote sensing, and other applications.
Doppler radar
A Doppler radar is a specialized radar that uses the Doppler effect to produce velocity data about objects at a distance. It does this by bouncing a microwave signal off a desired target and analyzing how the object's motion has altered the frequency of the returned signal. This variation gives direct and highly accurate measurements of the radial component of a target's velocity relative to the radar. The term applies to radar systems in many domains like aviation, police radar detectors, navigation, meteorology, etc.
Radar
Radar is a radiolocation system that uses radio waves to determine the distance (ranging), angle (azimuth), and radial velocity of objects relative to the site. It is used to detect and track aircraft, ships, spacecraft, guided missiles, and motor vehicles, and map weather formations, and terrain. A radar system consists of a transmitter producing electromagnetic waves in the radio or microwaves domain, a transmitting antenna, a receiving antenna (often the same antenna is used for transmitting and receiving) and a receiver and processor to determine properties of the objects.
Show more