In mathematics, specifically commutative algebra, Hilbert's basis theorem says that a polynomial ring over a Noetherian ring is Noetherian.
If is a ring, let denote the ring of polynomials in the indeterminate over . Hilbert proved that if is "not too large", in the sense that if is Noetherian, the same must be true for . Formally,
Hilbert's Basis Theorem. If is a Noetherian ring, then is a Noetherian ring.
Corollary. If is a Noetherian ring, then is a Noetherian ring.
This can be translated into algebraic geometry as follows: every algebraic set over a field can be described as the set of common roots of finitely many polynomial equations. Hilbert proved the theorem (for the special case of polynomial rings over a field) in the course of his proof of finite generation of rings of invariants.
Hilbert produced an innovative proof by contradiction using mathematical induction; his method does not give an algorithm to produce the finitely many basis polynomials for a given ideal: it only shows that they must exist. One can determine basis polynomials using the method of Gröbner bases.
Theorem. If is a left (resp. right) Noetherian ring, then the polynomial ring is also a left (resp. right) Noetherian ring.
Remark. We will give two proofs, in both only the "left" case is considered; the proof for the right case is similar.
Suppose is a non-finitely generated left ideal. Then by recursion (using the axiom of dependent choice) there is a sequence of polynomials such that if is the left ideal generated by then is of minimal degree. It is clear that is a non-decreasing sequence of natural numbers. Let be the leading coefficient of and let be the left ideal in generated by . Since is Noetherian the chain of ideals
must terminate. Thus for some integer . So in particular,
Now consider
whose leading term is equal to that of ; moreover, . However, , which means that has degree less than , contradicting the minimality.
Let be a left ideal. Let be the set of leading coefficients of members of .
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Repetition of the basic concepts of quantum mechanics and main numerical algorithms used for practical implementions. Basic principles of electronic structure methods:Hartree-Fock, many body perturbat
In mathematics, rings are algebraic structures that generalize fields: multiplication need not be commutative and multiplicative inverses need not exist. In other words, a ring is a set equipped with two binary operations satisfying properties analogous to those of addition and multiplication of integers. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series.
In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring (which is also a commutative algebra) formed from the set of polynomials in one or more indeterminates (traditionally also called variables) with coefficients in another ring, often a field. Often, the term "polynomial ring" refers implicitly to the special case of a polynomial ring in one indeterminate over a field. The importance of such polynomial rings relies on the high number of properties that they have in common with the ring of the integers.
In mathematics, Hilbert's Nullstellensatz (German for "theorem of zeros", or more literally, "zero-locus-theorem") is a theorem that establishes a fundamental relationship between geometry and algebra. This relationship is the basis of algebraic geometry. It relates algebraic sets to ideals in polynomial rings over algebraically closed fields. This relationship was discovered by David Hilbert, who proved the Nullstellensatz in his second major paper on invariant theory in 1893 (following his seminal 1890 paper in which he proved Hilbert's basis theorem).
DEMO will have a limited diagnostic set for optimization of reactor performance, and limited diagnostic coverage due to challenging reactor conditions. This poses challenges for control, especially for detachment control which is planned to be performed wi ...
Explores polynomial optimization, emphasizing SOS and nonnegative polynomials, including the representation of polynomials as quadratic functions of monomials.
In many countries, payment of unemployment benefit is conditional on active job-seeking on the part of recipients, who are required to accept any "reasonable" job offers made to them (Dalloz 2008). In France, this notion of "Reasonable Job Offer" (ORE) has ...
Hydraulic short circuit (HSC), corresponding to the simultaneous operation of the pumps and turbines, enhances the power flexibility of a pumped storage power plant (PSPP). However, comprehensive analyses are imperative to guarantee a secure and reliable o ...