In mathematics, a monomial is, roughly speaking, a polynomial which has only one term. Two definitions of a monomial may be encountered: A monomial, also called power product, is a product of powers of variables with nonnegative integer exponents, or, in other words, a product of variables, possibly with repetitions. For example, is a monomial. The constant is a monomial, being equal to the empty product and to for any variable . If only a single variable is considered, this means that a monomial is either or a power of , with a positive integer.
In statistics, the residual sum of squares (RSS), also known as the sum of squared residuals (SSR) or the sum of squared estimate of errors (SSE), is the sum of the squares of residuals (deviations predicted from actual empirical values of data). It is a measure of the discrepancy between the data and an estimation model, such as a linear regression. A small RSS indicates a tight fit of the model to the data. It is used as an optimality criterion in parameter selection and model selection.
In statistics, a sum of squares due to lack of fit, or more tersely a lack-of-fit sum of squares, is one of the components of a partition of the sum of squares of residuals in an analysis of variance, used in the numerator in an F-test of the null hypothesis that says that a proposed model fits well. The other component is the pure-error sum of squares. The pure-error sum of squares is the sum of squared deviations of each value of the dependent variable from the average value over all observations sharing its independent variable value(s).
In mathematics, a monomial order (sometimes called a term order or an admissible order) is a total order on the set of all (monic) monomials in a given polynomial ring, satisfying the property of respecting multiplication, i.e., If and is any other monomial, then . Monomial orderings are most commonly used with Gröbner bases and multivariate division. In particular, the property of being a Gröbner basis is always relative to a specific monomial order.
The partition of sums of squares is a concept that permeates much of inferential statistics and descriptive statistics. More properly, it is the partitioning of sums of squared deviations or errors. Mathematically, the sum of squared deviations is an unscaled, or unadjusted measure of dispersion (also called variability). When scaled for the number of degrees of freedom, it estimates the variance, or spread of the observations about their mean value.