**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Lecture# Weyl character formula

Description

This lecture covers the proof of the Weyl character formula for finite-dimensional representations of semisimple Lie algebras. It explains the concept of Weyl character formula, Cartan subalgebra, Verma module, and the complete reducibility theorem. The lecture also discusses the highest weight modules and their weight spaces.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

In course

Instructor

MATH-680: Monstrous moonshine

The monstrous moonshine is an unexpected connection between the Monster group and modular functions. In the course we will explain the statement of the conjecture and study the main ideas and concepts

Related concepts (383)

Module (mathematics)

In mathematics, a module is a generalization of the notion of vector space in which the field of scalars is replaced by a ring. The concept of module generalizes also the notion of abelian group, since the abelian groups are exactly the modules over the ring of integers. Like a vector space, a module is an additive abelian group, and scalar multiplication is distributive over the operation of addition between elements of the ring or module and is compatible with the ring multiplication.

Finitely generated module

In mathematics, a finitely generated module is a module that has a finite generating set. A finitely generated module over a ring R may also be called a finite R-module, finite over R, or a module of finite type. Related concepts include finitely cogenerated modules, finitely presented modules, finitely related modules and coherent modules all of which are defined below. Over a Noetherian ring the concepts of finitely generated, finitely presented and coherent modules coincide.

Projective module

In mathematics, particularly in algebra, the class of projective modules enlarges the class of free modules (that is, modules with basis vectors) over a ring, by keeping some of the main properties of free modules. Various equivalent characterizations of these modules appear below. Every free module is a projective module, but the converse fails to hold over some rings, such as Dedekind rings that are not principal ideal domains.

Free module

In mathematics, a free module is a module that has a basis, that is, a generating set consisting of linearly independent elements. Every vector space is a free module, but, if the ring of the coefficients is not a division ring (not a field in the commutative case), then there exist non-free modules. Given any set S and ring R, there is a free R-module with basis S, which is called the free module on S or module of formal R-linear combinations of the elements of S. A free abelian group is precisely a free module over the ring Z of integers.

Cyclic module

In mathematics, more specifically in ring theory, a cyclic module or monogenous module is a module over a ring that is generated by one element. The concept is a generalization of the notion of a cyclic group, that is, an Abelian group (i.e. Z-module) that is generated by one element. A left R-module M is called cyclic if M can be generated by a single element i.e. M = (x) = Rx = {rx r ∈ R} for some x in M. Similarly, a right R-module N is cyclic if N = yR for some y ∈ N. 2Z as a Z-module is a cyclic module.

Related lectures (1,000)

Group Algebra: Maschke's TheoremMATH-334: Representation theory

Explores Wedderburn's theorem, group algebras, and Maschke's theorem in the context of finite dimensional simple algebras and their endomorphisms.

Algebraic Kunneth TheoremMATH-506: Topology IV.b - cohomology rings

Covers the Algebraic Kunneth Theorem, explaining chain complexes and cohomology computations.

Group CohomologyMATH-506: Topology IV.b - cohomology rings

Covers the concept of group cohomology, focusing on chain complexes, cochain complexes, cup products, and group rings.

Kirillov Paradigm for Heisenberg Group

Explores the Kirillov paradigm for the Heisenberg group and unitary representations.

Structure of AlgebrasMATH-334: Representation theory

Covers the structure of finite dimensional algebras and the characterization of semisimple algebras.