In graph theory, the degree (or valency) of a vertex of a graph is the number of edges that are incident to the vertex; in a multigraph, a loop contributes 2 to a vertex's degree, for the two ends of the edge. The degree of a vertex is denoted or . The maximum degree of a graph , denoted by , and the minimum degree of a graph, denoted by , are the maximum and minimum of its vertices' degrees. In the multigraph shown on the right, the maximum degree is 5 and the minimum degree is 0. In a regular graph, every vertex has the same degree, and so we can speak of the degree of the graph. A complete graph (denoted , where is the number of vertices in the graph) is a special kind of regular graph where all vertices have the maximum possible degree, . In a signed graph, the number of positive edges connected to the vertex is called positive deg and the number of connected negative edges is entitled negative deg. Handshaking lemma The degree sum formula states that, given a graph , The formula implies that in any undirected graph, the number of vertices with odd degree is even. This statement (as well as the degree sum formula) is known as the handshaking lemma. The latter name comes from a popular mathematical problem, which is to prove that in any group of people, the number of people who have shaken hands with an odd number of other people from the group is even. The degree sequence of an undirected graph is the non-increasing sequence of its vertex degrees; for the above graph it is (5, 3, 3, 2, 2, 1, 0). The degree sequence is a graph invariant, so isomorphic graphs have the same degree sequence. However, the degree sequence does not, in general, uniquely identify a graph; in some cases, non-isomorphic graphs have the same degree sequence. The degree sequence problem is the problem of finding some or all graphs with the degree sequence being a given non-increasing sequence of positive integers. (Trailing zeroes may be ignored since they are trivially realized by adding an appropriate number of isolated vertices to the graph.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (22)
MATH-360: Graph theory
The course aims to introduce the basic concepts and results of modern Graph Theory with special emphasis on those topics and techniques that have proved to be applicable in theoretical computer scienc
MATH-260(a): Discrete mathematics
Study of structures and concepts that do not require the notion of continuity. Graph theory, or study of general countable sets are some of the areas that are covered by discrete mathematics. Emphasis
COM-308: Internet analytics
Internet analytics is the collection, modeling, and analysis of user data in large-scale online services, such as social networking, e-commerce, search, and advertisement. This class explores a number
Afficher plus
Publications associées (42)
Concepts associés (34)
Connectivity (graph theory)
In mathematics and computer science, connectivity is one of the basic concepts of graph theory: it asks for the minimum number of elements (nodes or edges) that need to be removed to separate the remaining nodes into two or more isolated subgraphs. It is closely related to the theory of network flow problems. The connectivity of a graph is an important measure of its resilience as a network. In an undirected graph G, two vertices u and v are called connected if G contains a path from u to v.
Problème du postier chinois
vignette|Le graphe des arêtes du cube n'est pas eulérien (sommets de degré 3), mais peut l'être rendu en dédoublant quatre de ses douze arêtes, ce qui ajoute un degré à chaque sommet et fournit un parcours de postier. En théorie des graphes et en algorithmique, le problème du postier chinois, ou problème du postier (en anglais route inspection problem) consiste à trouver un plus court chemin dans un graphe connexe non orienté qui passe au moins une fois par chaque arête et revient à son point de départ.
Tracé de graphes
En théorie des graphes, le tracé de graphes consiste à représenter des graphes dans le plan. Le tracé de graphes est utile à des applications telles que la conception de circuits VLSI, l'analyse de réseaux sociaux, la cartographie, et la bio-informatique. Les graphes sont généralement représentés en utilisant des points, disques ou boites pour représenter les sommets, et des courbes ou des segments pour représenter les arêtes. Pour les graphes orientés, on utilise habituellement ses flèches en bout d'arête pour représenter l'orientation.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.