vignette|Le graphe des arêtes du cube n'est pas eulérien (sommets de degré 3), mais peut l'être rendu en dédoublant quatre de ses douze arêtes, ce qui ajoute un degré à chaque sommet et fournit un parcours de postier.
En théorie des graphes et en algorithmique, le problème du postier chinois, ou problème du postier (en anglais route inspection problem) consiste à trouver un plus court chemin dans un graphe connexe non orienté qui passe au moins une fois par chaque arête et revient à son point de départ.
Le nom du problème vient du fait qu'il a été étudié par le mathématicien chinois Meigu Guan en 1962, et qu'il modélise la tournée d'un facteur devant effectuer le plus efficacement possible sa tournée en passant au moins une fois par chaque rue de son secteur.
vignette|Ce support de table figure un parcours de postier non minimal (6 arêtes dédoublées).
Le problème peut être réduit à la recherche d'un couplage maximal de poids minimum, et ainsi être résolu en temps polynomial dans le cas général.
Le meilleur résultat qu'on puisse espérer est de trouver un chemin passant exactement une fois par chaque arête, c'est-à-dire un cycle eulérien. Un tel chemin existe si et seulement si chaque sommet du graphe est de degré pair.
Dans le cas contraire, un chemin optimal passe au moins deux fois par une arête. Il est plus simple de considérer l'approche alternative du problème : plutôt que de permettre d'emprunter plusieurs fois la même arête, on duplique les arêtes du graphe par lesquelles on souhaite passer plusieurs fois. Le but est alors de compléter le graphe pour le rendre eulérien, en minimisant la longueur totale des arêtes ajoutées. On obtient une solution du problème initial en cherchant un circuit eulérien dans le graphe complété. On rappelle pour la suite que dans toute composante connexe d'un graphe, la somme des degrés des sommets est le double du nombre d'arêtes, donc est paire.
Pour comprendre la solution générale, il est utile de commencer par le cas où exactement deux sommets u et v sont de degré impair.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course introduces the theory and applications of optimization. We develop tools and concepts of optimization and decision analysis that enable managers in manufacturing, service operations, marke
The students learn the theory and practice of basic concepts and techniques in algorithms. The course covers mathematical induction, techniques for analyzing algorithms, elementary data structures, ma
This course is an introduction to linear and discrete optimization.Warning: This is a mathematics course! While much of the course will be algorithmic in nature, you will still need to be able to p
thumb|Un graphe non orienté où on a indiqué le degré de chaque sommet sur ce sommet. Dans ce graphe, le degré maximal est et le degré minimal est . En mathématiques, et plus particulièrement en théorie des graphes, le degré (ou valence) d'un sommet d'un graphe est le nombre de liens (arêtes ou arcs) reliant ce sommet, avec les boucles comptées deux fois. Le degré d'un sommet est noté . Dans le cas d'un graphe orienté, on parle aussi du degré entrant d'un sommet , c'est-à-dire le nombre d'arcs dirigés vers le sommet , et du degré sortant de ce sommet , c'est-à-dire le nombre d'arcs sortant de .
Dans le domaine des mathématiques discrètes, la théorie des graphes définit le graphe, une structure composée d'objets et de relations entre deux de ces objets. Abstraitement, lesdits objets sont appelés sommets (ou nœuds ou points), et les relations entre eux sont nommées arêtes (ou liens ou lignes). On distingue les graphes non orientés, où les arêtes relient deux sommets de manière symétrique, et les graphes orientés, où les arêtes, alors appelées arcs (ou flèches), relient deux sommets de manière asymétrique.
vignette|Le problème de voyageur de commerce : calculer un plus court circuit qui passe une et une seule fois par toutes les villes (ici 15 villes). En informatique, le problème du voyageur de commerce, ou problème du commis voyageur, est un problème d'optimisation qui consiste à déterminer, étant donné un ensemble de villes, le plus court circuit passant par chaque ville une seule fois. C'est un problème algorithmique célèbre, qui a donné lieu à de nombreuses recherches et qui est souvent utilisé comme introduction à l'algorithmique ou à la théorie de la complexité.
Gruber et al. (2022) offered a framework how to explain "Physical time within human time", solving the 'two times problem: Here, I am asking whether such a problem exists at all. To question the question, I will appeal to neurobiological, evolutionary, and ...
This paper examines the minimization of the cost for an expected random production output, given an assembly of finished goods from two random inputs, matched in two categories. We describe the optimal input portfolio, first using the standard normal appro ...
In this thesis, we propose model order reduction techniques for high-dimensional PDEs that preserve structures of the original problems and develop a closure modeling framework leveraging the Mori-Zwanzig formalism and recurrent neural networks. Since high ...