In mathematics, an absorbing element (or annihilating element) is a special type of element of a set with respect to a binary operation on that set. The result of combining an absorbing element with any element of the set is the absorbing element itself. In semigroup theory, the absorbing element is called a zero element because there is no risk of confusion with other notions of zero, with the notable exception: under additive notation zero may, quite naturally, denote the neutral element of a monoid. In this article "zero element" and "absorbing element" are synonymous. Formally, let (S, •) be a set S with a closed binary operation • on it (known as a magma). A zero element is an element z such that for all s in S, z • s = s • z = z. This notion can be refined to the notions of left zero, where one requires only that z • s = z, and right zero, where s • z = z. Absorbing elements are particularly interesting for semigroups, especially the multiplicative semigroup of a semiring. In the case of a semiring with 0, the definition of an absorbing element is sometimes relaxed so that it is not required to absorb 0; otherwise, 0 would be the only absorbing element. If a magma has both a left zero z and a right zero z′, then it has a zero, since z = z • z′ = z′. A magma can have at most one zero element. The most well known example of an absorbing element comes from elementary algebra, where any number multiplied by zero equals zero. Zero is thus an absorbing element. The zero of any ring is also an absorbing element. For an element r of a ring R, r0=r(0+0)=r0+r0, so 0=r0, as zero is the unique element a for which r-r=a for any r in the ring R. This property holds true also in a rng since multiplicative identity isn't required. Floating point arithmetics as defined in IEEE-754 standard contains a special value called Not-a-Number ("NaN"). It is an absorbing element for every operation; i.e., x + NaN = NaN + x = NaN, x − NaN = NaN − x = NaN, etc.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (16)
CS-101: Advanced information, computation, communication I
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
CIVIL-321: Numerical modelling of solids and structures
La modélisation numérique des solides est abordée à travers la méthode des éléments finis. Les aspects purement analytiques sont d'abord présentés, puis les moyens d'interpolation, d'intégration et de
COM-102: Advanced information, computation, communication II
Text, sound, and images are examples of information sources stored in our computers and/or communicated over the Internet. How do we measure, compress, and protect the informatin they contain?
Show more
Related publications (33)