In mathematical logic, algebraic logic is the reasoning obtained by manipulating equations with free variables.
What is now usually called classical algebraic logic focuses on the identification and algebraic description of models appropriate for the study of various logics (in the form of classes of algebras that constitute the algebraic semantics for these deductive systems) and connected problems like representation and duality. Well known results like the representation theorem for Boolean algebras and Stone duality fall under the umbrella of classical algebraic logic .
Works in the more recent abstract algebraic logic (AAL) focus on the process of algebraization itself, like classifying various forms of algebraizability using the Leibniz operator .
A homogeneous binary relation is found in the power set of X × X for some set X, while a heterogeneous relation is found in the power set of X × Y, where X ≠ Y. Whether a given relation holds for two individuals is one bit of information, so relations are studied with Boolean arithmetic. Elements of the power set are partially ordered by inclusion, and lattice of these sets becomes an algebra through relative multiplication or composition of relations.
"The basic operations are set-theoretic union, intersection and complementation, the relative multiplication, and conversion."
The conversion refers to the converse relation that always exists, contrary to function theory. A given relation may be represented by a logical matrix; then the converse relation is represented by the transpose matrix. A relation obtained as the composition of two others is then represented by the logical matrix obtained by matrix multiplication using Boolean arithmetic.
An example of calculus of relations arises in erotetics, the theory of questions. In the universe of utterances there are statements S and questions Q. There are two relations π and α from Q to S: q α a holds when a is a direct answer to question q. The other relation, q π p holds when p is a presupposition of question q.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, a homogeneous relation (also called endorelation) on a set X is a binary relation between X and itself, i.e. it is a subset of the Cartesian product X × X. This is commonly phrased as "a relation on X" or "a (binary) relation over X". An example of a homogeneous relation is the relation of kinship, where the relation is between people. Common types of endorelations include orders, graphs, and equivalences. Specialized studies of order theory and graph theory have developed understanding of endorelations.
In the mathematical field of , an allegory is a that has some of the structure of the category Rel of sets and binary relations between them. Allegories can be used as an abstraction of categories of relations, and in this sense the theory of allegories is a generalization of relation algebra to relations between different sorts. Allegories are also useful in defining and investigating certain constructions in category theory, such as completions. In this article we adopt the convention that morphisms compose from right to left, so RS means "first do S, then do R".
In mathematics, an absorbing element (or annihilating element) is a special type of element of a set with respect to a binary operation on that set. The result of combining an absorbing element with any element of the set is the absorbing element itself. In semigroup theory, the absorbing element is called a zero element because there is no risk of confusion with other notions of zero, with the notable exception: under additive notation zero may, quite naturally, denote the neutral element of a monoid.
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
La Physique Générale I (avancée) couvre la mécanique du point et du solide indéformable. Apprendre la mécanique, c'est apprendre à mettre sous forme mathématique un phénomène physique, en modélisant l
In this reading group, we will work together through recent important papers in applied topology.
Participants will take turns presenting articles, then leading a discussion of the contents.
Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly concerned with those that are relevant to mathematics as a whole. The modern study of set theory was initiated by the German mathematicians Richard Dedekind and Georg Cantor in the 1870s. In particular, Georg Cantor is commonly considered the founder of set theory.
In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures. Algebraic structures include groups, rings, fields, modules, vector spaces, lattices, and algebras over a field. The term abstract algebra was coined in the early 20th century to distinguish it from older parts of algebra, and more specifically from elementary algebra, the use of variables to represent numbers in computation and reasoning.
In mathematics, graph theory is the study of graphs, which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of vertices (also called nodes or points) which are connected by edges (also called links or lines). A distinction is made between undirected graphs, where edges link two vertices symmetrically, and directed graphs, where edges link two vertices asymmetrically. Graphs are one of the principal objects of study in discrete mathematics.
The Transfer Matrix formalism is ubiquitous when it comes to study wave propagation in various stratified media, applications ranging from Seismology to Quantum Mechanics. A relation between variables at two points in two different layers can be establishe ...
2022
, ,
Interface stress is a fundamental descriptor for interphase boundaries and is defined in strict relation to the interface energy. In nanomultilayers with their intrinsically high interface density, the functional properties are dictated by the interface st ...
Elsevier2024
, , ,
Façades and light pattern composition have been shown to influence the spatial experience and physiological responses of humans [1,2]. The present study examines the effect of sunlight penetration and window size on fixations to the floor of the scene, and ...