Résumé
En mathématiques (algèbre), un élément absorbant (ou élément permis) d'un ensemble pour une loi de composition interne est un élément de cet ensemble qui transforme tous les autres éléments en l'élément absorbant lorsqu'il est combiné avec eux par cette loi. Soit un magma. Un élément de est dit : absorbant à gauche si ; absorbant à droite si ; absorbant s'il est absorbant à droite et à gauche. Dans un magma , l'élément absorbant, s'il existe : est unique : si et sont deux éléments absorbants, ; est idempotent : si est absorbant, . Si un magma a un élément absorbant à gauche et un élément absorbant à droite, ces deux éléments sont égaux et le magma a un élément absorbant. En effet, si est absorbant à gauche et absorbant à droite, alors . Plusieurs éléments absorbants à gauche ou à droite peuvent exister dans un magma donné, mais s'il existe plus d'un élément absorbant à gauche, il n'en existe aucun à droite. En effet, supposons et deux éléments absorbants à gauche, et un élément absorbant à droite: . Par symétrie, s'il existe plus d'un élément absorbant à droite, il n'en existe aucun à gauche. Dans un anneau (A, +, ×), l'élément neutre 0 de + est absorbant pour ×. En effet, comme l'élément nul 0 est l'élément neutre de l'addition : . Ainsi, pour tout élément de l'anneau , . Par distributivité de la loi × sur la loi +, , si bien que , donc (puisque + est régulière, comme toute loi de groupe) a×0 = 0 et (de même) : 0×a = 0. L'élément absorbant de la multiplication entre des nombres réels est le zéro : (c'est d'ailleurs un exemple d'élément neutre de la première loi de l'anneau, absorbant pour la seconde). De façon analogue, le vecteur nul est élément absorbant pour le produit vectoriel et l'ensemble vide est élément absorbant pour l'intersection d'ensembles. L'élément absorbant de la disjonction est VRAI et celui de la conjonction est FAUX. Autrement dit, 1 est l'élément absorbant de la fonction OU (ou inclusif) et 0 est l'élément absorbant de la fonction ET. Dans l'ensemble P(E) des parties d'un ensemble E, l'élément E est absorbant pour la réunion.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (16)
CS-101: Advanced information, computation, communication I
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
CIVIL-321: Numerical modelling of solids and structures
La modélisation numérique des solides est abordée à travers la méthode des éléments finis. Les aspects purement analytiques sont d'abord présentés, puis les moyens d'interpolation, d'intégration et de
COM-102: Advanced information, computation, communication II
Text, sound, and images are examples of information sources stored in our computers and/or communicated over the Internet. How do we measure, compress, and protect the informatin they contain?
Afficher plus
Publications associées (33)
Personnes associées (1)