Concept

Équation différentielle

In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, and the differential equation defines a relationship between the two. Such relations are common; therefore, differential equations play a prominent role in many disciplines including engineering, physics, economics, and biology. The study of differential equations consists mainly of the study of their solutions (the set of functions that satisfy each equation), and of the properties of their solutions. Only the simplest differential equations are soluble by explicit formulas; however, many properties of solutions of a given differential equation may be determined without computing them exactly. Often when a closed-form expression for the solutions is not available, solutions may be approximated numerically using computers. The theory of dynamical systems puts emphasis on qualitative analysis of systems described by differential equations, while many numerical methods have been developed to determine solutions with a given degree of accuracy. Differential equations came into existence with the invention of calculus by Newton and Leibniz. In Chapter 2 of his 1671 work Methodus fluxionum et Serierum Infinitarum, Isaac Newton listed three kinds of differential equations: In all these cases, y is an unknown function of x (or of x1 and x2), and f is a given function. He solves these examples and others using infinite series and discusses the non-uniqueness of solutions. Jacob Bernoulli proposed the Bernoulli differential equation in 1695. This is an ordinary differential equation of the form for which the following year Leibniz obtained solutions by simplifying it. Historically, the problem of a vibrating string such as that of a musical instrument was studied by Jean le Rond d'Alembert, Leonhard Euler, Daniel Bernoulli, and Joseph-Louis Lagrange.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (77)
EE-106: Electrical engineering science & technology
Ce cours introduit les lois fondamentales de l'électricité et les méthodes permettant d'analyser des circuits électriques linéaires, composés de résistances, condensateurs et inductances. On commencer
EE-201: Electromagnetics II : field computation
Ce cours traite de l'électromagnétisme dans le vide et dans les milieux continus. A partir des principes fondamentaux de l'électromagnétisme, on établit les méthodes de résolution des équations de Max
ME-201: Continuum mechanics
Continuum conservation laws (e.g. mass, momentum and energy) will be introduced. Mathematical tools, including basic algebra and calculus of vectors and Cartesian tensors will be taught. Stress and de
Afficher plus
Séances de cours associées (959)
Équations non linéaires : méthode du point fixe
Couvre le sujet des équations non linéaires et de la méthode des points fixes.
Formes harmoniques et surfaces de Riemann
Explore les formes harmoniques sur les surfaces de Riemann, couvrant l'unicité des solutions et l'identité bilinéaire de Riemann.
Formes harmoniques : théorème principal
Explore les formes harmoniques sur les surfaces de Riemann et l'unicité des solutions aux équations harmoniques.
Afficher plus
Publications associées (829)

Model reduction of coupled systems based on non-intrusive approximations of the boundary response maps

Jan Sickmann Hesthaven, Niccolo' Discacciati

We propose a local, non -intrusive model order reduction technique to accurately approximate the solution of coupled multi -component parametrized systems governed by partial differential equations. Our approach is based on the approximation of the boundar ...
Lausanne2024

A Combination Technique for Optimal Control Problems Constrained by Random PDEs

Fabio Nobile, Tommaso Vanzan

We present a combination technique based on mixed differences of both spatial approximations and quadrature formulae for the stochastic variables to solve efficiently a class of optimal control problems (OCPs) constrained by random partial differential equ ...
2024

SPACE-TIME REDUCED BASIS METHODS FOR PARAMETRIZED UNSTEADY STOKES EQUATIONS

Simone Deparis, Riccardo Tenderini, Nicholas Mueller

In this work, we analyze space-time reduced basis methods for the efficient numerical simulation of haemodynamics in arteries. The classical formulation of the reduced basis (RB) method features dimensionality reduction in space, while finite difference sc ...
Philadelphia2024
Afficher plus
Concepts associés (61)
Condition initiale
En physique ou en mathématique, on définit comme conditions initiales les éléments nécessaires à la détermination de la solution complète et si possible unique d'un problème, éléments qui décrivent l'état du système à l'instant initial, c'est-à-dire l'état de départ. Plus formellement, on appelle « condition initiale » l'espace d'état d'un système étudié à l'instant initial. C'est ce qui permet de déterminer les coefficients des solutions des équations différentielles, par exemple les équations de mouvement des corps.
État stationnaire
En physique, un procédé est dit à l'état stationnaire ou en régime stationnaire si les variables le décrivant ne varient pas avec le temps. Mathématiquement un tel état se définit par: quelle que soit propriété du système (significative dans la présente perspective). Un exemple de procédé stationnaire est un réacteur chimique dans une phase de production continue. Un tel système travaille à température, à concentrations (réactifs et produits) et à volume constants ; en revanche, la couleur ou la texture du milieu peuvent être non-significatives.
Nonlinear system
In mathematics and science, a nonlinear system (or a non-linear system) is a system in which the change of the output is not proportional to the change of the input. Nonlinear problems are of interest to engineers, biologists, physicists, mathematicians, and many other scientists since most systems are inherently nonlinear in nature. Nonlinear dynamical systems, describing changes in variables over time, may appear chaotic, unpredictable, or counterintuitive, contrasting with much simpler linear systems.
Afficher plus
MOOCs associés (32)
Warm-up for EPFL
Warmup EPFL est destiné aux nouvelles étudiantes et étudiants de l'EPFL.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.