Concept

Preon

Summary
In particle physics, preons are hypothetical point particles, conceived of as sub-components of quarks and leptons. The word was coined by Jogesh Pati and Abdus Salam, in 1974. Interest in preon models peaked in the 1980s but has slowed, as the Standard Model of particle physics continues to describe physics mostly successfully, and no direct experimental evidence for lepton and quark compositeness has been found. Preons come in four varieties: plus, anti-plus, zero, and anti-zero. W bosons have six preons, and quarks and leptons have only three. In the hadronic sector, some effects are considered anomalies within the Standard Model. For example, the proton spin puzzle, the EMC effect, the distributions of electric charges inside the nucleons, as found by Hofstadter in 1956, and the ad hoc CKM matrix elements. When the term "preon" was coined, it was primarily to explain the two families of spin-1/2 fermions: quarks and leptons. More recent preon models also account for spin-1 bosons, and are still called "preons". Each of the preon models postulates a set of fewer fundamental particles than those of the Standard Model, together with the rules governing how those fundamental particles combine and interact. Based on these rules, the preon models try to explain the Standard Model, often predicting small discrepancies with this model and generating new particles and certain phenomena which do not belong to the Standard Model. Preon research is motivated by the desire to: Reduce the large number of particles, many that differ only in charge, to a smaller number of more fundamental particles. For example, the down quark and up quark are nearly identical except for charge, and a slight mass difference; preon research is motivated by explaining that quarks are composed of similar preons, with incremental differences accounting for charge. The hope is to reproduce the reductionist strategy that has worked for the periodic table of elements and the quark model of mesons and baryons. Explain the reason for there being exactly three generations of fermions.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.