Summary
In the physical sciences, a particle (or corpuscule in older texts) is a small localized object which can be described by several physical or chemical properties, such as volume, density, or mass. They vary greatly in size or quantity, from subatomic particles like the electron, to microscopic particles like atoms and molecules, to macroscopic particles like powders and other granular materials. Particles can also be used to create scientific models of even larger objects depending on their density, such as humans moving in a crowd or celestial bodies in motion. The term particle is rather general in meaning, and is refined as needed by various scientific fields. Anything that is composed of particles may be referred to as being particulate. However, the noun particulate is most frequently used to refer to pollutants in the Earth's atmosphere, which are a suspension of unconnected particles, rather than a connected particle aggregation. The concept of particles is particularly useful when modelling nature, as the full treatment of many phenomena can be complex and also involve difficult computation. It can be used to make simplifying assumptions concerning the processes involved. Francis Sears and Mark Zemansky, in University Physics, give the example of calculating the landing location and speed of a baseball thrown in the air. They gradually strip the baseball of most of its properties, by first idealizing it as a rigid smooth sphere, then by neglecting rotation, buoyancy and friction, ultimately reducing the problem to the ballistics of a classical point particle. The treatment of large numbers of particles is the realm of statistical physics. Particle size The term "particle" is usually applied differently to three classes of sizes. The term macroscopic particle, usually refers to particles much larger than atoms and molecules. These are usually abstracted as point-like particles, even though they have volumes, shapes, structures, etc.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.