In cardiac physiology, preload is the amount of sarcomere stretch experienced by cardiac muscle cells, called cardiomyocytes, at the end of ventricular filling during diastole. Preload is directly related to ventricular filling. As the relaxed ventricle fills during diastole, the walls are stretched and the length of sarcomeres increases. Sarcomere length can be approximated by the volume of the ventricle because each shape has a conserved surface-area-to-volume ratio. This is useful clinically because measuring the sarcomere length is destructive to heart tissue. It requires cutting out a piece of cardiac muscle to look at the sarcomeres under a microscope. It is currently not possible to directly measure preload in the beating heart of a living animal. Preload is estimated from end-diastolic ventricular pressure and is measured in millimeters of mercury (mmHg). Though not exactly equivalent to the strict definition of preload, end-diastolic volume is better suited to the clinic. It is relatively straightforward to estimate the volume of a healthy, filled left ventricle by visualizing the 2D cross-section with cardiac ultrasound. This technique is less helpful for estimating right ventricular preload because it is difficult to calculate the volume in an asymmetrical chamber. In cases of rapid heart rate, it can be difficult to capture the moment of maximum fill at the end of diastole, which means the volume may be difficult to measure in children or during tachycardia. An alternative to estimating the end-diastolic volume of the heart is to measure the end-diastolic pressure. This is possible because pressure and volume are related to one another according to Boyle's law, which can be simplified to The end diastolic pressure of the right ventricle can measured directly with a Swan-Ganz catheter. For the left ventricle, end diastolic pressure is most commonly estimated by taking the pulmonary wedge pressure, which is approximately equal to the pressure in the left atrium when the lungs are healthy.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (4)
MATH-106(e): Analysis II
Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles de plusieurs variables.
BIO-377: Physiology by systems
Le but est de connaitre et comprendre le fonctionnement des systèmes cardiovasculaire, urinaire, respiratoire, digestif, ainsi que du métabolisme de base et sa régulation afin de déveloper une réflect
ME-481: Biomechanics of the cardiovascular system
This lecture will cover anatomy and physiology of the cardiovascular system, biophysics of the blood, cardiac mechanics, hemodynamics and biomechanics of the arterial system, microcirculation and biom
Show more
Related lectures (18)
Linear Differential Equations: Solution Methods
Covers solution methods for linear differential equations of second order with constant coefficients.
Linear Differential Equations
Explores linear differential equations, superposition of solutions, and verification methods.
Cardiac Mechanics: Structure and Function
Explores the anatomy and function of the heart, covering cardiac circulation, electrical activity, and muscle biomechanics.
Show more
Related publications (30)

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.