Summary
In mathematics, a quadric or quadric surface (quadric hypersurface in higher dimensions), is a generalization of conic sections (ellipses, parabolas, and hyperbolas). It is a hypersurface (of dimension D) in a (D + 1)-dimensional space, and it is defined as the zero set of an irreducible polynomial of degree two in D + 1 variables; for example, D = 1 in the case of conic sections. When the defining polynomial is not absolutely irreducible, the zero set is generally not considered a quadric, although it is often called a degenerate quadric or a reducible quadric. In coordinates x1, x2, ..., xD+1, the general quadric is thus defined by the algebraic equation which may be compactly written in vector and matrix notation as: where x = (x1, x2, ..., xD+1) is a row vector, xT is the transpose of x (a column vector), Q is a (D + 1) × (D + 1) matrix and P is a (D + 1)-dimensional row vector and R a scalar constant. The values Q, P and R are often taken to be over real numbers or complex numbers, but a quadric may be defined over any field. A quadric is an affine algebraic variety, or, if it is reducible, an affine algebraic set. Quadrics may also be defined in projective spaces; see , below. conic section As the dimension of a Euclidean plane is two, quadrics in a Euclidean plane have dimension one and are thus plane curves. They are called conic sections, or conics. In three-dimensional Euclidean space, quadrics have dimension two, and are known as quadric surfaces. Their quadratic equations have the form where are real numbers, and at least one of A, B, and C is nonzero. The quadric surfaces are classified and named by their shape, which corresponds to the orbits under affine transformations. That is, if an affine transformation maps a quadric onto another one, they belong to the same class, and share the same name and many properties. The principal axis theorem shows that for any (possibly reducible) quadric, a suitable change of Cartesian coordinates or, equivalently, a Euclidean transformation allows putting the equation of the quadric into a unique simple form on which the class of the quadric is immediately visible.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.