Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Earth's outer core is a fluid layer about thick, composed of mostly iron and nickel that lies above Earth's solid inner core and below its mantle. The outer core begins approximately beneath Earth's surface at the core-mantle boundary and ends beneath Earth's surface at the inner core boundary. Unlike Earth's solid, inner core, its outer core is liquid. Evidence for a fluid outer core includes seismology which shows that seismic shear-waves are not transmitted through the outer core. Although having a composition similar to Earth's solid inner core, the outer core remains liquid as there is not enough pressure to keep it in a solid state. Seismic inversions of body waves and normal modes constrain the radius of the outer core to be 3483 km with an uncertainty of 5 km, while that of the inner core is 1220±10 km. Estimates for the temperature of the outer core are about in its outer region and near the inner core. Modeling has shown that the outer core, because of its high temperature, is a low-viscosity fluid that convects turbulently. The dynamo theory sees eddy currents in the nickel-iron fluid of the outer core as the principal source of Earth's magnetic field. The average magnetic field strength in Earth's outer core is estimated to be 2.5 millitesla, 50 times stronger than the magnetic field at the surface. As Earth's core cools, the liquid at the inner core boundary freezes, causing the solid inner core to grow at the expense of the outer core, at an estimated rate of 1 mm per year. This is approximately 80,000 tonnes of iron per second. Earth's outer core cannot be entirely constituted of iron or iron-nickel alloy because their densities are higher than geophysical measurements of the density of Earth's outer core. In fact, Earth's outer core is approximately 5 to 10 percent lower density than iron at Earth's core temperatures and pressures. Hence it has been proposed that light elements with low atomic numbers comprise part of Earth's outer core, as the only feasible way to lower its density.
William Curtin, Ankit Gupta, Max Ludwig Hodapp
Philippe Gillet, Marco Cantoni, James Badro, Susannah McGregor Dorfman, Farhang Nabiei, Charles-Edouard Boukaré