Summary
The core–mantle boundary (CMB) of Earth lies between the planet's silicate mantle and its liquid iron–nickel outer core, at a depth of below Earth's surface. The boundary is observed via the discontinuity in seismic wave velocities at that depth due to the differences between the acoustic impedances of the solid mantle and the molten outer core. P-wave velocities are much slower in the outer core than in the deep mantle while S-waves do not exist at all in the liquid portion of the core. Recent evidence suggests a distinct boundary layer directly above the CMB possibly made of a novel phase of the basic perovskite mineralogy of the deep mantle named post-perovskite. Seismic tomography studies have shown significant irregularities within the boundary zone and appear to be dominated by the African and Pacific Large Low-Shear-Velocity Provinces (LLSVP). The uppermost section of the outer core is thought to be about 500–1,800 K hotter than the overlying mantle, creating a thermal boundary layer. The boundary is thought to harbor topography, much like Earth's surface, that is supported by solid-state convection within the overlying mantle. Variations in the thermal properties of the core-mantle boundary may affect how the outer core's iron-rich fluids flow, which are ultimately responsible for Earth's magnetic field. The approx. 200 km thick layer of the lower mantle directly above the boundary is referred to as the D′′ region ("D double-prime" or "D prime prime") and is sometimes included in discussions regarding the core–mantle boundary zone. The D′′ name originates from mathematician Keith Bullen's designations for the Earth's layers. His system was to label each layer alphabetically, A through G, with the crust as 'A' and the inner core as 'G'. In his 1942 publication of his model, the entire lower mantle was the D layer. In 1949, Bullen found his 'D' layer to actually be two different layers. The upper part of the D layer, about 1800 km thick, was renamed D′ (D prime) and the lower part (the bottom 200 km) was named D′′.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood