In mathematics, an isomorphism class is a collection of mathematical objects isomorphic to each other.
Isomorphism classes are often defined as the exact identity of the elements of the set is considered irrelevant, and the properties of the structure of the mathematical object are studied. Examples of this are ordinals and graphs. However, there are circumstances in which the isomorphism class of an object conceals vital internal information about it; consider these examples:
The associative algebras consisting of coquaternions and 2 × 2 real matrices are isomorphic as rings. Yet they appear in different contexts for application (plane mapping and kinematics) so the isomorphism is insufficient to merge the concepts.
In homotopy theory, the fundamental group of a space at a point , though technically denoted to emphasize the dependence on the base point, is often written lazily as simply if is path connected. The reason for this is that the existence of a path between two points allows one to identify loops at one with loops at the other; however, unless is abelian this isomorphism is non-unique. Furthermore, the classification of covering spaces makes strict reference to particular subgroups of , specifically distinguishing between isomorphic but conjugate subgroups, and therefore amalgamating the elements of an isomorphism class into a single featureless object seriously decreases the level of detail provided by the theory.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word isomorphism is derived from the Ancient Greek: ἴσος isos "equal", and μορφή morphe "form" or "shape". The interest in isomorphisms lies in the fact that two isomorphic objects have the same properties (excluding further information such as additional structure or names of objects).
In mathematics, rings are algebraic structures that generalize fields: multiplication need not be commutative and multiplicative inverses need not exist. In other words, a ring is a set equipped with two binary operations satisfying properties analogous to those of addition and multiplication of integers. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series.
In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called points, along with an additional structure called a topology, which can be defined as a set of neighbourhoods for each point that satisfy some axioms formalizing the concept of closeness.
Let R be a semilocal principal ideal domain. Two algebraic objects over R in which scalar extension makes sense (e.g. quadratic spaces) are said to be of the same genus if they become isomorphic after extending scalars to all completions of R and its fract ...
Let K be an algebraically closed field of characteristic p≥0 and let Y=SPin2n+1(K)(n≥3) be a simply connected simple algebraic group of type Bn over K. Also let X be the subgroup of type Dn, embedded in Y in the usual way, as the ...
A hallmark of graph neural networks is their ability to distinguish the isomorphism class of their inputs. This study derives hardness results for the classification variant of graph isomorphism in the message-passing model (MPNN). MPNN encompasses the maj ...