**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Patching And Weak Approximation In Isometry Groups

Abstract

Let R be a semilocal principal ideal domain. Two algebraic objects over R in which scalar extension makes sense (e.g. quadratic spaces) are said to be of the same genus if they become isomorphic after extending scalars to all completions of R and its fraction field. We prove that the number of isomorphism classes in the genus of unimodular quadratic spaces over ( not necessarily commutative) R-orders is always a finite power of 2, and under further assumptions, e.g., that the order is hereditary, this number is 1. The same result is also shown for related objects, e.g., systems of sesquilinear forms. A key ingredient in the proof is a weak approximation theorem for groups of isometries, which is valid over any (topological) base field, and even over semilocal base rings.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (8)

Related publications (1)

Sesquilinear form

In mathematics, a sesquilinear form is a generalization of a bilinear form that, in turn, is a generalization of the concept of the dot product of Euclidean space. A bilinear form is linear in each of its arguments, but a sesquilinear form allows one of the arguments to be "twisted" in a semilinear manner, thus the name; which originates from the Latin numerical prefix sesqui- meaning "one and a half".

Isomorphism

In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word isomorphism is derived from the Ancient Greek: ἴσος isos "equal", and μορφή morphe "form" or "shape". The interest in isomorphisms lies in the fact that two isomorphic objects have the same properties (excluding further information such as additional structure or names of objects).

Quadratic form

In mathematics, a quadratic form is a polynomial with terms all of degree two ("form" is another name for a homogeneous polynomial). For example, is a quadratic form in the variables x and y. The coefficients usually belong to a fixed field K, such as the real or complex numbers, and one speaks of a quadratic form over K. If , and the quadratic form equals zero only when all variables are simultaneously zero, then it is a definite quadratic form; otherwise it is an isotropic quadratic form.

Let R be a semilocal Dedekind domain. Under certain assumptions, we show that two (not necessarily unimodular) hermitian forms over an R-algebra with involution, which are rationally isomorphic and ha