Summary
In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word isomorphism is derived from the Ancient Greek: ἴσος isos "equal", and μορφή morphe "form" or "shape". The interest in isomorphisms lies in the fact that two isomorphic objects have the same properties (excluding further information such as additional structure or names of objects). Thus isomorphic structures cannot be distinguished from the point of view of structure only, and may be identified. In mathematical jargon, one says that two objects are . An automorphism is an isomorphism from a structure to itself. An isomorphism between two structures is a canonical isomorphism (a canonical map that is an isomorphism) if there is only one isomorphism between the two structures (as is the case for solutions of a universal property), or if the isomorphism is much more natural (in some sense) than other isomorphisms. For example, for every prime number p, all fields with p elements are canonically isomorphic, with a unique isomorphism. The isomorphism theorems provide canonical isomorphisms that are not unique. The term is mainly used for algebraic structures. In this case, mappings are called homomorphisms, and a homomorphism is an isomorphism if and only if it is bijective. In various areas of mathematics, isomorphisms have received specialized names, depending on the type of structure under consideration. For example: An isometry is an isomorphism of metric spaces. A homeomorphism is an isomorphism of topological spaces. A diffeomorphism is an isomorphism of spaces equipped with a differential structure, typically differentiable manifolds. A symplectomorphism is an isomorphism of symplectic manifolds. A permutation is an automorphism of a set. In geometry, isomorphisms and automorphisms are often called transformations, for example rigid transformations, affine transformations, projective transformations.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.