Concept

Isomorphisme

Résumé
En mathématiques, un isomorphisme entre deux ensembles structurés est une application bijective qui préserve la structure, et dont la réciproque préserve aussi la structure. Plus généralement, en théorie des catégories, un isomorphisme entre deux objets est un morphisme admettant un « morphisme inverse ». Par exemple, sur l'intervalle [1 ; 100] des valeurs a, b, c... peuvent être remplacées par leur logarithme x, y, z..., et les relations d'ordre entre elles seront conservées. On peut à tout moment retrouver les valeurs a, b et c en prenant les exponentielles de x, y et z. Le logarithme et l'exponentielle sont des isomorphismes entre ces intervalles. D'autres termes peuvent être utilisés pour désigner un isomorphisme en spécifiant la structure, comme l'homéomorphisme entre espaces topologiques ou le difféomorphisme entre variétés. Deux objets sont dits isomorphes s'il existe un isomorphisme
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées

Chargement

Personnes associées

Chargement

Unités associées

Chargement

Concepts associés

Chargement

Cours associés

Chargement

Séances de cours associées

Chargement