Summary
A nuclide (or nucleide, from nucleus, also known as nuclear species) is a class of atoms characterized by their number of protons, Z, their number of neutrons, N, and their nuclear energy state. The word nuclide was coined by Truman P. Kohman in 1947. Kohman defined nuclide as a "species of atom characterized by the constitution of its nucleus" containing a certain number of neutrons and protons. The term thus originally focused on the nucleus. A nuclide is a species of an atom with a specific number of protons and neutrons in the nucleus, for example carbon-13 with 6 protons and 7 neutrons. The nuclide concept (referring to individual nuclear species) emphasizes nuclear properties over chemical properties, while the isotope concept (grouping all atoms of each element) emphasizes chemical over nuclear. The neutron number has large effects on nuclear properties, but its effect on chemical reactions is negligible for most elements. Even in the case of the very lightest elements, where the ratio of neutron number to atomic number varies the most between isotopes, it usually has only a small effect, but it matters in some circumstances. For hydrogen, the lightest element, the isotope effect is large enough to affect biological systems strongly. In the case of helium, helium-4 obeys Bose–Einstein statistics, while helium-3 obeys Fermi-Dirac statistics. Since isotope is the older term, it is better known than nuclide, and is still occasionally used in contexts in which nuclide might be more appropriate, such as nuclear technology and nuclear medicine. Although the words nuclide and isotope are often used interchangeably, being isotopes is actually only one relation between nuclides. The following table names some other relations. A set of nuclides with equal proton number (atomic number), i.e., of the same chemical element but different neutron numbers, are called isotopes of the element. Particular nuclides are still often loosely called "isotopes", but the term "nuclide" is the correct one in general (i.e.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.