In astronautics, the Hohmann transfer orbit (ˈhoʊmən) is an orbital maneuver used to transfer a spacecraft between two orbits of different altitudes around a central body. Examples would be used for travel between low Earth orbit and the Moon, or another solar planet or asteroid. In the idealized case, the initial and target orbits are both circular and coplanar. The maneuver is accomplished by placing the craft into an elliptical transfer orbit that is tangential to both the initial and target orbits. The maneuver uses two impulsive engine burns: the first establishes the transfer orbit, and the second adjusts the orbit to match the target.
The Hohmann maneuver often uses the lowest possible amount of impulse (which consumes a proportional amount of delta-v, and hence propellant) to accomplish the transfer, but requires a relatively longer travel time than higher-impulse transfers. In some cases where one orbit is much larger than the other, a bi-elliptic transfer can use even less impulse, at the cost of even greater travel time.
The maneuver was named after Walter Hohmann, the German scientist who published a description of it in his 1925 book Die Erreichbarkeit der Himmelskörper (The Attainability of Celestial Bodies). Hohmann was influenced in part by the German science fiction author Kurd Lasswitz and his 1897 book Two Planets.
When used for traveling between celestial bodies, a Hohmann transfer orbit requires that the starting and destination points be at particular locations in their orbits relative to each other. Space missions using a Hohmann transfer must wait for this required alignment to occur, which opens a launch window. For a mission between Earth and Mars, for example, these launch windows occur every 26 months. A Hohmann transfer orbit also determines a fixed time required to travel between the starting and destination points; for an Earth-Mars journey this travel time is about 9 months. When transfer is performed between orbits close to celestial bodies with significant gravitation, much less delta-v is usually required, as the Oberth effect may be employed for the burns.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course is a "concepts" course. It introduces a variety of concepts in use in the design of a space mission, manned or unmanned, and in space operations. it is partly based on the practical space
All fundamental principles behind modern satellite positioning to acquire, track and evaluate direct and indirect satellite signals and process them in relation to example applications: Earth monito
The aim of this course is to acquire the basic knowledge on specific dynamical phenomena related to the origin, equilibrium, and evolution of star
clusters, galaxies, and galaxy clusters.
Delta-v (more known as "change in velocity"), symbolized as ∆v and pronounced delta-vee, as used in spacecraft flight dynamics, is a measure of the impulse per unit of spacecraft mass that is needed to perform a maneuver such as launching from or landing on a planet or moon, or an in-space orbital maneuver. It is a scalar that has the units of speed. As used in this context, it is not the same as the physical change in velocity of said spacecraft. A simple example might be the case of a conventional rocket-propelled spacecraft, which achieves thrust by burning fuel.
Orbital mechanics or astrodynamics is the application of ballistics and celestial mechanics to the practical problems concerning the motion of rockets and other spacecraft. The motion of these objects is usually calculated from Newton's laws of motion and the law of universal gravitation. Orbital mechanics is a core discipline within space-mission design and control. Celestial mechanics treats more broadly the orbital dynamics of systems under the influence of gravity, including both spacecraft and natural astronomical bodies such as star systems, planets, moons, and comets.
In astrodynamics and aerospace, a delta-v budget is an estimate of the total change in velocity (delta-v) required for a space mission. It is calculated as the sum of the delta-v required to perform each propulsive maneuver needed during the mission. As input to the Tsiolkovsky rocket equation, it determines how much propellant is required for a vehicle of given empty mass and propulsion system. Delta-v is a scalar quantity dependent only on the desired trajectory and not on the mass of the space vehicle.
Photoplethysmography (PPG) enables non-invasive vitals monitoring. Nevertheless, it is intrinsically limited by the extremely small AC/DC ratio, also called perfusion-index (PI). This increases the dynamic-range requirements to reliably process the PPG wav ...
Context. Isolated local group (LG) dwarf galaxies have evolved most or all of their life unaffected by interactions with the large LG spirals and therefore offer the opportunity to learn about the intrinsic characteristics of this class of objects. Aims. O ...
Dans cette intervention, nous revenons sur la genèse de la recherche « Corona Citizen Science ». Nous discutons des défis pour la recherche en sciences sociales de mettre ses ressources à disposition de la société civile tout en recourant à des méthodes ad ...