In mathematics, a half-integer is a number of the form where is a whole number. For example, are all half-integers. The name "half-integer" is perhaps misleading, as the set may be misunderstood to include numbers such as 1 (being half the integer 2). A name such as "integer-plus-half" may be more accurate, but even though not literally true, "half integer" is the conventional term. Half-integers occur frequently enough in mathematics and in quantum mechanics that a distinct term is convenient. Note that halving an integer does not always produce a half-integer; this is only true for odd integers. For this reason, half-integers are also sometimes called half-odd-integers. Half-integers are a subset of the dyadic rationals (numbers produced by dividing an integer by a power of two). The set of all half-integers is often denoted The integers and half-integers together form a group under the addition operation, which may be denoted However, these numbers do not form a ring because the product of two half-integers is not a half-integer; e.g. The smallest ring containing them is , the ring of dyadic rationals. The sum of half-integers is a half-integer if and only if is odd. This includes since the empty sum 0 is not half-integer. The negative of a half-integer is a half-integer. The cardinality of the set of half-integers is equal to that of the integers. This is due to the existence of a bijection from the integers to the half-integers: , where is an integer The densest lattice packing of unit spheres in four dimensions (called the D4 lattice) places a sphere at every point whose coordinates are either all integers or all half-integers. This packing is closely related to the Hurwitz integers: quaternions whose real coefficients are either all integers or all half-integers. In physics, the Pauli exclusion principle results from definition of fermions as particles which have spins that are half-integers. The energy levels of the quantum harmonic oscillator occur at half-integers and thus its lowest energy is not zero.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.