In mathematics, the double factorial of a number n, denoted by n!!, is the product of all the positive integers up to n that have the same parity (odd or even) as n. That is, Restated, this says that for even n, the double factorial is while for odd n it is For example, 9!! = 9 × 7 × 5 × 3 × 1 = 945. The zero double factorial 0!! = 1 as an empty product. The sequence of double factorials for even n = 0, 2, 4, 6, 8,... starts as The sequence of double factorials for odd n = 1, 3, 5, 7, 9,... starts as The term odd factorial is sometimes used for the double factorial of an odd number. In a 1902 paper, the physicist Arthur Schuster wrote: The symbolical representation of the results of this paper is much facilitated by the introduction of a separate symbol for the product of alternate factors, , if be odd, or if be odd [sic]. I propose to write for such products, and if a name be required for the product to call it the "alternate factorial" or the "double factorial." states that the double factorial was originally introduced in order to simplify the expression of certain trigonometric integrals that arise in the derivation of the Wallis product. Double factorials also arise in expressing the volume of a hypersphere, and they have many applications in enumerative combinatorics. They occur in Student's t-distribution (1908), though Gosset did not use the double exclamation point notation. Because the double factorial only involves about half the factors of the ordinary factorial, its value is not substantially larger than the square root of the factorial n!, and it is much smaller than the iterated factorial (n!)!. The factorial of a positive n may be written as the product of two double factorials: and therefore where the denominator cancels the unwanted factors in the numerator. (The last form also applies when n = 0.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (7)
CS-101: Advanced information, computation, communication I
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
CS-320: Computer language processing
We teach the fundamental aspects of analyzing and interpreting computer languages, including the techniques to build compilers. You will build a working compiler from an elegant functional language in
ME-201: Continuum mechanics
Continuum conservation laws (e.g. mass, momentum and energy) will be introduced. Mathematical tools, including basic algebra and calculus of vectors and Cartesian tensors will be taught. Stress and de
Afficher plus
Séances de cours associées (36)
L’environnement plutôt que les substitutions
Présente un interpréteur basé sur l'environnement pour les fonctions récursives, optimisant l'évaluation grâce à des liaisons de paramètres et éliminant le besoin de substitutions explicites.
Résoudre le Quintique : Analyse de l'équilibre dominant
Explore l'analyse de l'équilibre dominant dans la résolution du polynôme quintique, révélant des aperçus sur le comportement de la racine et l'importance des expressions symboliques.
Combinatoire: Méthodes de comptage
Introduit des méthodes de combinatoire et de comptage pour déterminer les résultats possibles dans divers scénarios, illustrés par des exemples.
Afficher plus
Publications associées (4)

Two-dimensional Hubbard model at finite temperature: Weak, strong, and long correlation regimes

Riccardo Rossi

We investigate the momentum-resolved spin and charge susceptibilities, as well as the chemical potential and double occupancy in the two-dimensional Hubbard model as functions of doping, temperature, and interaction strength. Through these quantities, we i ...
AMER PHYSICAL SOC2022

Pairs of majority-decomposing functions

Giovanni De Micheli, Mathias Soeken, Eleonora Testa

We are interested in decompositions xnf1f2 of the majority function over n odd arguments x1, ...,xnsuch that f1and f2do not depend on xn. In this paper, we derive the conditions for f1and f2that satisfy the decomposition. Such decompositions play a centr ...
2018

A MATLAB-based tool for visualizing the plane wave propagation in multilayer structures containing metamaterials

Juan Ramon Mosig

The paper reports on a graphical user interface developed in MATLAB to aid the visualization of the plane wave impinging from a lossless half-space onto a multilayer structure. Individual layers are assumed to be homogeneous and isotropic with electric per ...
2012
Afficher plus
Concepts associés (16)
Stirling numbers of the first kind
In mathematics, especially in combinatorics, Stirling numbers of the first kind arise in the study of permutations. In particular, the Stirling numbers of the first kind count permutations according to their number of cycles (counting fixed points as cycles of length one). The Stirling numbers of the first and second kind can be understood as inverses of one another when viewed as triangular matrices. This article is devoted to specifics of Stirling numbers of the first kind.
Asymptotic analysis
In mathematical analysis, asymptotic analysis, also known as asymptotics, is a method of describing limiting behavior. As an illustration, suppose that we are interested in the properties of a function f (n) as n becomes very large. If f(n) = n2 + 3n, then as n becomes very large, the term 3n becomes insignificant compared to n2. The function f(n) is said to be "asymptotically equivalent to n2, as n → ∞". This is often written symbolically as f (n) ~ n2, which is read as "f(n) is asymptotic to n2".
Formule de Stirling
vignette La formule de Stirling, du nom du mathématicien écossais James Stirling, donne un équivalent de la factorielle d'un entier naturel n quand n tend vers l'infini : que l'on trouve souvent écrite ainsi : où le nombre e désigne la base de l'exponentielle. C'est Abraham de Moivre qui a initialement démontré la formule suivante : où C est une constante réelle (non nulle). L'apport de Stirling fut d'attribuer la valeur C = à la constante et de donner un développement de ln(n!) à tout ordre.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.