Summary
Object detection is a computer technology related to computer vision and that deals with detecting instances of semantic objects of a certain class (such as humans, buildings, or cars) in digital images and videos. Well-researched domains of object detection include face detection and pedestrian detection. Object detection has applications in many areas of computer vision, including and video surveillance. It is widely used in computer vision tasks such as , vehicle counting, activity recognition, face detection, face recognition, video object co-segmentation. It is also used in tracking objects, for example tracking a ball during a football match, tracking movement of a cricket bat, or tracking a person in a video. Often, the test images are sampled from a different data distribution, making the object detection task significantly more difficult. To address the challenges caused by the domain gap between training and test data, many unsupervised domain adaptation approaches have been proposed. A simple and straightforward solution of reducing the domain gap is to apply an image-to-image translation approach, such as cycle-GAN. Among other uses, cross-domain object detection is applied in autonomous driving, where models can be trained on a vast amount of video game scenes, since the labels can be generated without manual labor. Every object class has its own special features that help in classifying the class – for example all circles are round. Object class detection uses these special features. For example, when looking for circles, objects that are at a particular distance from a point (i.e. the center) are sought. Similarly, when looking for squares, objects that are perpendicular at corners and have equal side lengths are needed. A similar approach is used for face identification where eyes, nose, and lips can be found and features like skin color and distance between eyes can be found. Methods for object detection generally fall into either neural network-based or non-neural approaches.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.