Summary
Link-state routing protocols are one of the two main classes of routing protocols used in packet switching networks for computer communications, the others being distance-vector routing protocols. Examples of link-state routing protocols include Open Shortest Path First (OSPF) and Intermediate System to Intermediate System (IS-IS). The link-state protocol is performed by every switching node in the network (i.e., nodes that are prepared to forward packets; in the Internet, these are called routers). The basic concept of link-state routing is that every node constructs a map of the connectivity to the network, in the form of a graph, showing which nodes are connected to which other nodes. Each node then independently calculates the next best logical path from it to every possible destination in the network. Each collection of best paths will then form each node's routing table. This contrasts with distance-vector routing protocols, which work by having each node share its routing table with its neighbours, in a link-state protocol the only information passed between nodes is connectivity related. Link-state algorithms are sometimes characterized informally as each router, "telling the world about its neighbors." In link-state routing protocols, each router possesses information about the complete network topology. Each router then independently calculates the best next hop from it for every possible destination in the network using local information of the topology. The collection of best-next-hops forms the routing table. This contrasts with distance-vector routing protocols, which work by having each node share its routing table with its neighbours. In a link-state protocol, the only information passed between the nodes is the information used to construct the connectivity maps. Examples of link-state routing protocols: Open Shortest Path First (OSPF) Intermediate System to Intermediate System (IS-IS) What is believed to be the first adaptive routing network of computers, using link-state routing as its heart, was designed and implemented during 1976-1977 by a team from Plessey Radar led by Bernard J Harris; the project was for "Wavell" - a system of computer command and control for the British Army.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (7)
COM-407: TCP/IP networking
In the lectures you will learn and understand the main ideas that underlie and the way communication networks are built and run. In the labs you will exercise practical configurations.
EE-320: Analog IC design
Introduction to the design of analog CMOS integrated circuits at the transistor level. Understanding and design of basic structures.
COM-208: Computer networks
This course provides an introduction to computer networks. It describes the principles that underly modern network operation and illustrates them using the Internet as an example.
Show more